{"title":"Intersection decision making for autonomous vehicles based on improved PPO algorithm","authors":"Dong Guo, Shoulin He, Shouwen Ji","doi":"10.1049/itr2.12593","DOIUrl":null,"url":null,"abstract":"<p>The deployment of autonomous vehicles (AVs) in complex urban environments faces numerous challenges, especially at intersections where they coexist with human-driven vehicles (HVs), resulting in increased safety risks. In response, this study proposes an improved control strategy based on the Proximal Policy Optimization (PPO) algorithm, specifically designed for hybrid intersections, known as MSA-PPO. First, the Self-Attention Mechanism (SAM) is introduced into the algorithmic framework to quickly identify the surrounding vehicles with a greater impact on the ego vehicle from different perspectives, accelerating data processing and improving decision quality. Second, an invalid action masking mechanism is adopted to reduce the action space, ensuring actions are only selected from feasible sets, thereby enhancing decision efficiency. Finally, comparative and ablation experiments in hybrid intersection simulation environments of varying complexity are conducted to validate the algorithm's effectiveness. The results show that the improved algorithm converges faster, achieves higher decision accuracy, and demonstrates the highest speed levels during driving compared to other baseline algorithms.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2921-2938"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12593","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12593","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of autonomous vehicles (AVs) in complex urban environments faces numerous challenges, especially at intersections where they coexist with human-driven vehicles (HVs), resulting in increased safety risks. In response, this study proposes an improved control strategy based on the Proximal Policy Optimization (PPO) algorithm, specifically designed for hybrid intersections, known as MSA-PPO. First, the Self-Attention Mechanism (SAM) is introduced into the algorithmic framework to quickly identify the surrounding vehicles with a greater impact on the ego vehicle from different perspectives, accelerating data processing and improving decision quality. Second, an invalid action masking mechanism is adopted to reduce the action space, ensuring actions are only selected from feasible sets, thereby enhancing decision efficiency. Finally, comparative and ablation experiments in hybrid intersection simulation environments of varying complexity are conducted to validate the algorithm's effectiveness. The results show that the improved algorithm converges faster, achieves higher decision accuracy, and demonstrates the highest speed levels during driving compared to other baseline algorithms.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf