求助PDF
{"title":"A comprehensive review of molecular dynamics simulation on the replacement characteristics and mechanism of CO2-CH4 hydrate in porous media systems","authors":"Xuemin Zhang, Tingting Huang, Tao Shan, Qing Yuan, Jinping Li, Qingbai wu, Peng Zhang","doi":"10.1002/ghg.2292","DOIUrl":null,"url":null,"abstract":"<p>Natural gas hydrate (NGH), is a new green-sustainable energy source, and the process of recovering CH<sub>4</sub> from NGH by replacing CO<sub>2</sub> is regarded as an advantageous way to mine NGH. However, improving the replacement efficiency of CO<sub>2</sub>-CH<sub>4</sub> hydrate is a critical problem in the CO<sub>2</sub> replacement mining process. The feasibility study of the replacement for CO<sub>2</sub>-CH<sub>4</sub> hydrate, as well as the research status of the replacement characteristics for various situations, is examined in this review. Additionally, the microscopic mechanism of CO<sub>2</sub>-CH<sub>4</sub> hydrate replacement in porous media is explored in detail. The basic molecular dynamic (MD) simulation method and primary influencing factors of CO<sub>2</sub>-CH<sub>4</sub> hydrate replacement were summarized systematically. Finally, the shortcomings of MD simulation of CO<sub>2</sub>-CH<sub>4</sub> hydrate replacement process in porous medium system and the future development direction are pointed out. The relevant results will offer helpful direction for future NGH exploitation. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"695-710"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2292","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Natural gas hydrate (NGH), is a new green-sustainable energy source, and the process of recovering CH4 from NGH by replacing CO2 is regarded as an advantageous way to mine NGH. However, improving the replacement efficiency of CO2 -CH4 hydrate is a critical problem in the CO2 replacement mining process. The feasibility study of the replacement for CO2 -CH4 hydrate, as well as the research status of the replacement characteristics for various situations, is examined in this review. Additionally, the microscopic mechanism of CO2 -CH4 hydrate replacement in porous media is explored in detail. The basic molecular dynamic (MD) simulation method and primary influencing factors of CO2 -CH4 hydrate replacement were summarized systematically. Finally, the shortcomings of MD simulation of CO2 -CH4 hydrate replacement process in porous medium system and the future development direction are pointed out. The relevant results will offer helpful direction for future NGH exploitation. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.
多孔介质系统中 CO2-CH4 水合物置换特性与机理的分子动力学模拟综述
天然气水合物(NGH)是一种新型绿色可持续能源,通过替代 CO2 从 NGH 中回收 CH4 的工艺被认为是开采 NGH 的一种有利方法。然而,提高 CO2-CH4 水合物的置换效率是 CO2 置换开采过程中的一个关键问题。本综述探讨了 CO2-CH4 水合物置换的可行性研究以及各种情况下置换特性的研究现状。此外,还详细探讨了多孔介质中 CO2-CH4 水合物置换的微观机理。系统总结了基本的分子动力学 (MD) 模拟方法和 CO2-CH4 水合物置换的主要影响因素。最后,指出了多孔介质体系中 CO2-CH4 水合物置换过程 MD 模拟的不足之处和未来的发展方向。相关结果将为未来 NGH 的开发利用提供有益的指导。© 2024 化学工业学会和 John Wiley & Sons, Ltd. 保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。