SceneMotifCoder: Example-driven Visual Program Learning for Generating 3D Object Arrangements

Hou In Ivan Tam, Hou In Derek Pun, Austin T. Wang, Angel X. Chang, Manolis Savva
{"title":"SceneMotifCoder: Example-driven Visual Program Learning for Generating 3D Object Arrangements","authors":"Hou In Ivan Tam, Hou In Derek Pun, Austin T. Wang, Angel X. Chang, Manolis Savva","doi":"arxiv-2408.02211","DOIUrl":null,"url":null,"abstract":"Despite advances in text-to-3D generation methods, generation of multi-object\narrangements remains challenging. Current methods exhibit failures in\ngenerating physically plausible arrangements that respect the provided text\ndescription. We present SceneMotifCoder (SMC), an example-driven framework for\ngenerating 3D object arrangements through visual program learning. SMC\nleverages large language models (LLMs) and program synthesis to overcome these\nchallenges by learning visual programs from example arrangements. These\nprograms are generalized into compact, editable meta-programs. When combined\nwith 3D object retrieval and geometry-aware optimization, they can be used to\ncreate object arrangements varying in arrangement structure and contained\nobjects. Our experiments show that SMC generates high-quality arrangements\nusing meta-programs learned from few examples. Evaluation results demonstrates\nthat object arrangements generated by SMC better conform to user-specified text\ndescriptions and are more physically plausible when compared with\nstate-of-the-art text-to-3D generation and layout methods.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advances in text-to-3D generation methods, generation of multi-object arrangements remains challenging. Current methods exhibit failures in generating physically plausible arrangements that respect the provided text description. We present SceneMotifCoder (SMC), an example-driven framework for generating 3D object arrangements through visual program learning. SMC leverages large language models (LLMs) and program synthesis to overcome these challenges by learning visual programs from example arrangements. These programs are generalized into compact, editable meta-programs. When combined with 3D object retrieval and geometry-aware optimization, they can be used to create object arrangements varying in arrangement structure and contained objects. Our experiments show that SMC generates high-quality arrangements using meta-programs learned from few examples. Evaluation results demonstrates that object arrangements generated by SMC better conform to user-specified text descriptions and are more physically plausible when compared with state-of-the-art text-to-3D generation and layout methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SceneMotifCoder:生成三维物体排列的示例驱动可视化程序学习
尽管文本到三维的生成方法取得了进步,但生成多对象排列仍然充满挑战。目前的方法无法生成符合所提供文本描述的物理上可信的排列。我们提出了 SceneMotifCoder(SMC),这是一个通过视觉程序学习生成三维物体排列的示例驱动框架。SMC 利用大型语言模型(LLM)和程序合成,通过从示例排列中学习视觉程序来克服这些挑战。这些程序被归纳为紧凑、可编辑的元程序。当与三维物体检索和几何感知优化相结合时,它们可用于创建在排列结构和所含物体方面各不相同的物体排列。我们的实验表明,SMC 可以利用从少数示例中学到的元程序生成高质量的排列。评估结果表明,与最先进的文本到三维生成和布局方法相比,SMC 生成的对象排列更符合用户指定的文本描述,在物理上也更加合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1