MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization

Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang, Guosheng Lin
{"title":"MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization","authors":"Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang, Guosheng Lin","doi":"arxiv-2408.02555","DOIUrl":null,"url":null,"abstract":"We introduce MeshAnything V2, an autoregressive transformer that generates\nArtist-Created Meshes (AM) aligned to given shapes. It can be integrated with\nvarious 3D asset production pipelines to achieve high-quality, highly\ncontrollable AM generation. MeshAnything V2 surpasses previous methods in both\nefficiency and performance using models of the same size. These improvements\nare due to our newly proposed mesh tokenization method: Adjacent Mesh\nTokenization (AMT). Different from previous methods that represent each face\nwith three vertices, AMT uses a single vertex whenever possible. Compared to\nprevious methods, AMT requires about half the token sequence length to\nrepresent the same mesh in average. Furthermore, the token sequences from AMT\nare more compact and well-structured, fundamentally benefiting AM generation.\nOur extensive experiments show that AMT significantly improves the efficiency\nand performance of AM generation. Project Page:\nhttps://buaacyw.github.io/meshanything-v2/","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce MeshAnything V2, an autoregressive transformer that generates Artist-Created Meshes (AM) aligned to given shapes. It can be integrated with various 3D asset production pipelines to achieve high-quality, highly controllable AM generation. MeshAnything V2 surpasses previous methods in both efficiency and performance using models of the same size. These improvements are due to our newly proposed mesh tokenization method: Adjacent Mesh Tokenization (AMT). Different from previous methods that represent each face with three vertices, AMT uses a single vertex whenever possible. Compared to previous methods, AMT requires about half the token sequence length to represent the same mesh in average. Furthermore, the token sequences from AMT are more compact and well-structured, fundamentally benefiting AM generation. Our extensive experiments show that AMT significantly improves the efficiency and performance of AM generation. Project Page: https://buaacyw.github.io/meshanything-v2/
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MeshAnything V2:通过相邻网格标记化生成艺术家创作的网格
我们介绍 MeshAnything V2,它是一种自回归变换器,可生成与给定形状对齐的艺术家自创网格(AM)。它可以与各种三维资产生产流水线集成,以实现高质量、高度可控的 AM 生成。在使用相同大小的模型时,MeshAnything V2 在效率和性能上都超越了以前的方法。这些改进归功于我们新提出的网格标记化方法:相邻网格标记化(AMT)。与以前用三个顶点表示每个面的方法不同,AMT 尽可能使用单个顶点。与以前的方法相比,AMT 平均只需要一半的标记序列长度就能表示相同的网格。我们的大量实验表明,AMT 显著提高了 AM 生成的效率和性能。项目页面:https://buaacyw.github.io/meshanything-v2/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1