A novel palladium decorated graphdiyne regulating d band center enhanced the ability of square meter scale and coal chemical wastewater for efficient hydrogen production
Jingzhi Wang, Mei Li, Youlin Wu, Nini Zhao, Zhiliang Jin
{"title":"A novel palladium decorated graphdiyne regulating d band center enhanced the ability of square meter scale and coal chemical wastewater for efficient hydrogen production","authors":"Jingzhi Wang, Mei Li, Youlin Wu, Nini Zhao, Zhiliang Jin","doi":"10.1016/j.apcatb.2024.124488","DOIUrl":null,"url":null,"abstract":"The large amount of organic wastewater generated by the coal chemical industry requires multiple processes to remove harmful substances, which is costly. Based on this, palladium-modified GDY (Pd-GDY) was prepared for the first time, using acetylene gas generated from carbide slag as a precursor. And grow CdS on its surface to form Pd-GDY/CdS heterostructure material. The photocatalytic performance in coal chemical wastewater can reach 7.35 μmol·g·h. Meanwhile, in the industrial hydrogen production experiment on a square meter scale, the hydrogen production rate reached 3.42 mmol·h. Density functional theory (DFT) calculations indicate that the excellent hydrogen evolution activity is attributed to the regulation of the d band center by Pd-GDY. More antibonding energy bands are below the Fermi level, filled with electrons, reducing bond stability and adsorption strength, resulting in a decrease in hydrogen adsorption free energy. Overall, this work provides new insights into the synthesis of novel graphdiyne and its application in wastewater and industrial hydrogen production based on regulating d band center in heterogeneous catalytic systems.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The large amount of organic wastewater generated by the coal chemical industry requires multiple processes to remove harmful substances, which is costly. Based on this, palladium-modified GDY (Pd-GDY) was prepared for the first time, using acetylene gas generated from carbide slag as a precursor. And grow CdS on its surface to form Pd-GDY/CdS heterostructure material. The photocatalytic performance in coal chemical wastewater can reach 7.35 μmol·g·h. Meanwhile, in the industrial hydrogen production experiment on a square meter scale, the hydrogen production rate reached 3.42 mmol·h. Density functional theory (DFT) calculations indicate that the excellent hydrogen evolution activity is attributed to the regulation of the d band center by Pd-GDY. More antibonding energy bands are below the Fermi level, filled with electrons, reducing bond stability and adsorption strength, resulting in a decrease in hydrogen adsorption free energy. Overall, this work provides new insights into the synthesis of novel graphdiyne and its application in wastewater and industrial hydrogen production based on regulating d band center in heterogeneous catalytic systems.