{"title":"A novel nonconvex, smooth-at-origin penalty for statistical learning","authors":"Majnu John, Sujit Vettam, Yihren Wu","doi":"10.1007/s00180-024-01525-x","DOIUrl":null,"url":null,"abstract":"<p>Nonconvex penalties are utilized for regularization in high-dimensional statistical learning algorithms primarily because they yield unbiased or nearly unbiased estimators for the parameters in the model. Nonconvex penalties existing in the literature such as SCAD, MCP, Laplace and arctan have a singularity at origin which makes them useful also for variable selection. However, in several high-dimensional frameworks such as deep learning, variable selection is less of a concern. In this paper, we present a nonconvex penalty which is smooth at origin. The paper includes asymptotic results for ordinary least squares estimators regularized with the new penalty function, showing asymptotic bias that vanishes exponentially fast. We also conducted simulations to better understand the finite sample properties and conducted an empirical study employing deep neural network architecture on three datasets and convolutional neural network on four datasets. The empirical study based on artificial neural networks showed better performance for the new regularization approach in five out of the seven datasets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01525-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonconvex penalties are utilized for regularization in high-dimensional statistical learning algorithms primarily because they yield unbiased or nearly unbiased estimators for the parameters in the model. Nonconvex penalties existing in the literature such as SCAD, MCP, Laplace and arctan have a singularity at origin which makes them useful also for variable selection. However, in several high-dimensional frameworks such as deep learning, variable selection is less of a concern. In this paper, we present a nonconvex penalty which is smooth at origin. The paper includes asymptotic results for ordinary least squares estimators regularized with the new penalty function, showing asymptotic bias that vanishes exponentially fast. We also conducted simulations to better understand the finite sample properties and conducted an empirical study employing deep neural network architecture on three datasets and convolutional neural network on four datasets. The empirical study based on artificial neural networks showed better performance for the new regularization approach in five out of the seven datasets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.