Brain-like border ownership signals support prediction of natural videos

Zeyuan Ye, Ralf Wessel, Tom P. Franken
{"title":"Brain-like border ownership signals support prediction of natural videos","authors":"Zeyuan Ye, Ralf Wessel, Tom P. Franken","doi":"10.1101/2024.08.11.607040","DOIUrl":null,"url":null,"abstract":"To make sense of visual scenes, the brain must segment foreground from background. This is thought to be facilitated by neurons in the primate visual system that encode border ownership (BOS), i.e. whether a local border is part of an object on one or the other side of the border. It is unclear how these signals emerge in neural networks without a teaching signal of what is foreground and background. In this study, we investigated whether BOS signals exist in PredNet, a self-supervised artificial neural network trained to predict the next image frame of natural video sequences. We found that a significant number of units in PredNet are selective for BOS. Moreover these units share several other properties with the BOS neurons in the brain, including robustness to scene variations that constitute common object transformations in natural videos, and hysteresis of BOS signals. Finally, we performed ablation experiments and found that BOS units contribute more to prediction than non-BOS units for videos with moving objects. Our findings indicate that BOS units are especially useful to predict future input in natural videos, even when networks are not required to segment foreground from background. This suggests that BOS neurons in the brain might be the result of evolutionary or developmental pressure to predict future input in natural, complex dynamic visual environments.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.11.607040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To make sense of visual scenes, the brain must segment foreground from background. This is thought to be facilitated by neurons in the primate visual system that encode border ownership (BOS), i.e. whether a local border is part of an object on one or the other side of the border. It is unclear how these signals emerge in neural networks without a teaching signal of what is foreground and background. In this study, we investigated whether BOS signals exist in PredNet, a self-supervised artificial neural network trained to predict the next image frame of natural video sequences. We found that a significant number of units in PredNet are selective for BOS. Moreover these units share several other properties with the BOS neurons in the brain, including robustness to scene variations that constitute common object transformations in natural videos, and hysteresis of BOS signals. Finally, we performed ablation experiments and found that BOS units contribute more to prediction than non-BOS units for videos with moving objects. Our findings indicate that BOS units are especially useful to predict future input in natural videos, even when networks are not required to segment foreground from background. This suggests that BOS neurons in the brain might be the result of evolutionary or developmental pressure to predict future input in natural, complex dynamic visual environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类脑边界所有权信号支持自然视频预测
为了理解视觉场景,大脑必须将前景与背景分割开来。灵长类动物视觉系统中的神经元可编码边界所有权(BOS),即局部边界是否属于边界一侧或另一侧的物体。目前还不清楚,在没有关于前景和背景的教学信号的情况下,这些信号是如何在神经网络中出现的。在这项研究中,我们调查了 PredNet 中是否存在 BOS 信号,PredNet 是一个经过训练的自我监督人工神经网络,用于预测自然视频序列的下一帧图像。我们发现,PredNet 中的大量单元对 BOS 具有选择性。此外,这些单元与大脑中的 BOS 神经元还具有其他一些共同特性,包括对构成自然视频中常见物体变换的场景变化的鲁棒性,以及 BOS 信号的滞后性。最后,我们进行了消融实验,发现在有移动物体的视频中,BOS 单元比非 BOS 单元对预测的贡献更大。我们的研究结果表明,在自然视频中,即使不需要网络来分割前景和背景,BOS 单元对预测未来输入也特别有用。这表明,大脑中的 BOS 神经元可能是在自然、复杂的动态视觉环境中预测未来输入的进化或发展压力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FUS controls muscle differentiation and structure through LLPS mediated recruitment of MEF2 and ETV5 Neural basis of collective social behavior during environmental challenge Contrasting Cognitive, Behavioral, and Physiological Responses to Breathwork vs. Naturalistic Stimuli in Reflective Chamber and VR Headset Environments Alpha-synuclein preformed fibril-induced aggregation and dopaminergic cell death in cathepsin D overexpression and ZKSCAN3 knockout mice Histamine interferes with the early visual processing in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1