Toni Mueller, Parker Jeffrey, Yecheng He, Xiaosen Ouyang, David Westbrook, Victor Darley-Usmar, Matthew S Goldberg, Laura Volpicelli-Daley, Jianhua Zhang
{"title":"Alpha-synuclein preformed fibril-induced aggregation and dopaminergic cell death in cathepsin D overexpression and ZKSCAN3 knockout mice","authors":"Toni Mueller, Parker Jeffrey, Yecheng He, Xiaosen Ouyang, David Westbrook, Victor Darley-Usmar, Matthew S Goldberg, Laura Volpicelli-Daley, Jianhua Zhang","doi":"10.1101/2024.09.18.613763","DOIUrl":null,"url":null,"abstract":"alpha-synuclein accumulation is recognized as a prominent feature in the majority of Parkinson disease cases and also occurs in a broad range of neurodegenerative disorders including Alzheimer disease. It has been shown that alpha-synuclein can spread from a donor cell to neighboring cells and thus propagate cellular damage, antagonizing the effectiveness of therapies such as transplantation of fetal or iPSC derived dopaminergic cells. As we and others previously have shown, insufficient lysosomal function due to genetic mutations or targeted disruption of cathepsin D can cause alpha-synuclein accumulation. We here investigated whether overexpression of cathepsin D or knockout (KO) of the transcriptional suppressor of lysosomal biogenesis ZKSCAN3 can attenuate propagation of alpha-synuclein aggregation and cell death. We examined dopaminergic neurodegeneration in the substantia nigra using stereology of tyrosine hydroxylase-immunoreactive cells 4 months and 6 months after intrastriatal injection of alpha-synuclein preformed fibrils or monomeric alpha-synuclein control in control, central nervous system (CNS)-cathepsin D overexpressing and CNS-specific ZKSCAN3 KO mice. We also examined pS129-alpha-synuclein aggregates in the substantia nigra, cortex, amygdala and striatum. The extent of dopaminergic neurodegeneration and pS129-alpha-synuclein aggregation in the brains of CNS-specific ZKSCAN3 knockout mice and CNS-cathepsin D overexpressing mice was similar to that observed in wild-type mice. Our results indicate that neither enhancing cathepsin D expression nor disrupting ZKSCAN3 in the CNS is sufficient to attenuate pS129-alpha-synuclein aggregate accumulation or dopaminergic neurodegeneration.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
alpha-synuclein accumulation is recognized as a prominent feature in the majority of Parkinson disease cases and also occurs in a broad range of neurodegenerative disorders including Alzheimer disease. It has been shown that alpha-synuclein can spread from a donor cell to neighboring cells and thus propagate cellular damage, antagonizing the effectiveness of therapies such as transplantation of fetal or iPSC derived dopaminergic cells. As we and others previously have shown, insufficient lysosomal function due to genetic mutations or targeted disruption of cathepsin D can cause alpha-synuclein accumulation. We here investigated whether overexpression of cathepsin D or knockout (KO) of the transcriptional suppressor of lysosomal biogenesis ZKSCAN3 can attenuate propagation of alpha-synuclein aggregation and cell death. We examined dopaminergic neurodegeneration in the substantia nigra using stereology of tyrosine hydroxylase-immunoreactive cells 4 months and 6 months after intrastriatal injection of alpha-synuclein preformed fibrils or monomeric alpha-synuclein control in control, central nervous system (CNS)-cathepsin D overexpressing and CNS-specific ZKSCAN3 KO mice. We also examined pS129-alpha-synuclein aggregates in the substantia nigra, cortex, amygdala and striatum. The extent of dopaminergic neurodegeneration and pS129-alpha-synuclein aggregation in the brains of CNS-specific ZKSCAN3 knockout mice and CNS-cathepsin D overexpressing mice was similar to that observed in wild-type mice. Our results indicate that neither enhancing cathepsin D expression nor disrupting ZKSCAN3 in the CNS is sufficient to attenuate pS129-alpha-synuclein aggregate accumulation or dopaminergic neurodegeneration.