Hailin Yue;Jin Liu;Lina Zhao;Hulin Kuang;Jianhong Cheng;Junjian Li;Mengshen He;Jie Gong;Jianxin Wang
{"title":"A2HTL: An Automated Hybrid Transformer-Based Learning for Predicting Survival of Esophageal Cancer Using CT Images","authors":"Hailin Yue;Jin Liu;Lina Zhao;Hulin Kuang;Jianhong Cheng;Junjian Li;Mengshen He;Jie Gong;Jianxin Wang","doi":"10.1109/TNB.2024.3441533","DOIUrl":null,"url":null,"abstract":"Esophageal cancer is a common malignant tumor, precisely predicting survival of esophageal cancer is crucial for personalized treatment. However, current region of interest (ROI) based methodologies not only necessitate prior medical knowledge for tumor delineation, but may also cause the model to be overly sensitive to ROI. To address these challenges, we develop an automated Hybrid Transformer based learning that integrates a Hybrid Transformer size-aware U-Net with a ranked survival prediction network to enable automatic survival prediction for esophageal cancer. Specifically, we first incorporate the Transformer with shifted windowing multi-head self-attention mechanism (SW-MSA) into the base of the U-Net encoder to capture the long-range dependency in CT images. Furthermore, to alleviate the imbalance between the ROI and the background in CT images, we devise a size-aware coefficient for the segmentation loss. Finally, we also design a ranked pair sorting loss to more comprehensively capture the ranked information inherent in CT images. We evaluate our proposed method on a dataset comprising 759 samples with esophageal cancer. Experimental results demonstrate the superior performance of our proposed method in survival prediction, even without ROI ground truth.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10633746/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal cancer is a common malignant tumor, precisely predicting survival of esophageal cancer is crucial for personalized treatment. However, current region of interest (ROI) based methodologies not only necessitate prior medical knowledge for tumor delineation, but may also cause the model to be overly sensitive to ROI. To address these challenges, we develop an automated Hybrid Transformer based learning that integrates a Hybrid Transformer size-aware U-Net with a ranked survival prediction network to enable automatic survival prediction for esophageal cancer. Specifically, we first incorporate the Transformer with shifted windowing multi-head self-attention mechanism (SW-MSA) into the base of the U-Net encoder to capture the long-range dependency in CT images. Furthermore, to alleviate the imbalance between the ROI and the background in CT images, we devise a size-aware coefficient for the segmentation loss. Finally, we also design a ranked pair sorting loss to more comprehensively capture the ranked information inherent in CT images. We evaluate our proposed method on a dataset comprising 759 samples with esophageal cancer. Experimental results demonstrate the superior performance of our proposed method in survival prediction, even without ROI ground truth.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).