Giuseppe Quaratiello, Samuele Risoli, Daniele Antichi, Elisa Pellegrini, Cristina Nali, Giacomo Lorenzini, Silvia Pampana, Claudia Pisuttu, Mariagrazia Tonelli, Lorenzo Cotrozzi
{"title":"Exogenous melatonin application helps late-sown durum wheat to cope with waterlogging under Mediterranean environmental conditions.","authors":"Giuseppe Quaratiello, Samuele Risoli, Daniele Antichi, Elisa Pellegrini, Cristina Nali, Giacomo Lorenzini, Silvia Pampana, Claudia Pisuttu, Mariagrazia Tonelli, Lorenzo Cotrozzi","doi":"10.1111/ppl.14477","DOIUrl":null,"url":null,"abstract":"<p><p>In Mediterranean countries, late-sown durum wheat (Triticum turgidum L. subsp. durum) may face waterlogging (WL) at early stages. As mitigation of waterlogging by melatonin (MT) has been poorly explored, we analyzed the effects of exogenous MT foliar application to WL-stressed durum wheat on its ecophysiological performance, growth and biomass production. Late-sown plants of a relatively tolerant cultivar (i.e., Emilio-Lepido) were subjected to two WL durations (i.e., 14 and 35 days of WL; DOW) at tillering, with or without exogenous MT application (i.e., 0 and 100 μM). Prolonged WL reduced shoot biomass (-43%), but the application of MT mitigated this detrimental effect. Waterlogging impaired photosynthesis, reducing leaf CO<sub>2</sub> assimilation and chlorophyll content (-61 and - 57%, at 14 and 35 DOW). In control, MT increased the photosynthetic pigments (+48%), whereas it exacerbated the decrease in photosynthesis under both WL conditions (-72%, on average). Conversely, MT reduced WL-induced oxidative damage in both shoots and roots (-25% hydrogen peroxide production), facilitating osmotic adjustments and mitigating oxidative stress. The accumulation of osmotic regulators in MT + WL plants (+140 and + 42%, in shoots and roots at 35 DOW; respectively) and mineral solutes (+140 and + 104%, on average, in shoots and roots at 14 DOW) likely mitigated WL stress, limiting the impact of oxidative stress and promoting biomass accumulation. Our results highlight the potential of MT as a bioactive compound in mitigating the adverse effects of WL on late-sown durum wheat and the importance of the complex interactions between physiological responses and environmental stressors.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14477","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In Mediterranean countries, late-sown durum wheat (Triticum turgidum L. subsp. durum) may face waterlogging (WL) at early stages. As mitigation of waterlogging by melatonin (MT) has been poorly explored, we analyzed the effects of exogenous MT foliar application to WL-stressed durum wheat on its ecophysiological performance, growth and biomass production. Late-sown plants of a relatively tolerant cultivar (i.e., Emilio-Lepido) were subjected to two WL durations (i.e., 14 and 35 days of WL; DOW) at tillering, with or without exogenous MT application (i.e., 0 and 100 μM). Prolonged WL reduced shoot biomass (-43%), but the application of MT mitigated this detrimental effect. Waterlogging impaired photosynthesis, reducing leaf CO2 assimilation and chlorophyll content (-61 and - 57%, at 14 and 35 DOW). In control, MT increased the photosynthetic pigments (+48%), whereas it exacerbated the decrease in photosynthesis under both WL conditions (-72%, on average). Conversely, MT reduced WL-induced oxidative damage in both shoots and roots (-25% hydrogen peroxide production), facilitating osmotic adjustments and mitigating oxidative stress. The accumulation of osmotic regulators in MT + WL plants (+140 and + 42%, in shoots and roots at 35 DOW; respectively) and mineral solutes (+140 and + 104%, on average, in shoots and roots at 14 DOW) likely mitigated WL stress, limiting the impact of oxidative stress and promoting biomass accumulation. Our results highlight the potential of MT as a bioactive compound in mitigating the adverse effects of WL on late-sown durum wheat and the importance of the complex interactions between physiological responses and environmental stressors.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.