John Heath, Caitlynn Mirabelli, Matthew G Annis, Valerie Sabourin, Steven Hebert, Steven Findlay, HaEun Kim, Michael Witcher, Claudia L Kleinman, Peter M Siegel, Alexandre Orthwein, Josie Ursini-Siegel
{"title":"The Neurodevelopmental Protein POGZ Suppresses Metastasis in Triple-Negative Breast Cancer by Attenuating TGFβ Signaling.","authors":"John Heath, Caitlynn Mirabelli, Matthew G Annis, Valerie Sabourin, Steven Hebert, Steven Findlay, HaEun Kim, Michael Witcher, Claudia L Kleinman, Peter M Siegel, Alexandre Orthwein, Josie Ursini-Siegel","doi":"10.1158/0008-5472.CAN-23-3887","DOIUrl":null,"url":null,"abstract":"<p><p>The pogo transposable element-derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple-negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFβ pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Although POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade. Significance: The POGZ neurodevelopmental protein plays dual functions in triple-negative breast cancers as a tumor promoter and metastasis suppressor, inhibiting TGFβ-regulated EMT to limit breast cancer metastatic progression.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"3743-3760"},"PeriodicalIF":12.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-23-3887","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pogo transposable element-derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple-negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFβ pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Although POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade. Significance: The POGZ neurodevelopmental protein plays dual functions in triple-negative breast cancers as a tumor promoter and metastasis suppressor, inhibiting TGFβ-regulated EMT to limit breast cancer metastatic progression.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.