The PB2 I714S mutation influenced mammalian adaptation of the H3N2 canine influenza virus by interfering with nuclear import efficiency and RNP complex assembly.
Xueyun Li, Tingting Jia, Kele Wang, Liangliang Wang, Lijuan Zhou, Mao Li, Wenfei Zhu, Yuelong Shu, Yongkun Chen
{"title":"The PB2 I714S mutation influenced mammalian adaptation of the H3N2 canine influenza virus by interfering with nuclear import efficiency and RNP complex assembly.","authors":"Xueyun Li, Tingting Jia, Kele Wang, Liangliang Wang, Lijuan Zhou, Mao Li, Wenfei Zhu, Yuelong Shu, Yongkun Chen","doi":"10.1080/22221751.2024.2387439","DOIUrl":null,"url":null,"abstract":"<p><p>Avian influenza viruses (AIVs) are the origin of multiple mammal influenza viruses. The genetic determinants of AIVs adapted to humans have been widely elucidated, however, the molecular mechanism of cross-species transmission and adaptation of AIVs to canines are still poorly understood. In this study, two H3N2 influenza viruses isolated from a live poultry market (A/environment/Guangxi/13431/2018, GX13431) and a swab sample from a canine (A/canine/Guangdong/0601/2019, GD0601) were used to investigate the possible molecular basis that determined H3N2 AIV adapting to canine. We found that GD0601 exhibited more robust polymerase activity in cells and higher pathogenicity in mice compared with its evolution ancestor H3N2 AIV GX13431. A series of reassortments of the ribonucleoprotein (RNP) complex showed that the PB2 subunit was the crucial factor that conferred high polymerase activity of GD0601, and the substitution of I714S in the PB2 subunit of GD0601 attenuated the replication and pathogenicity in mammal cells and the mouse model. Mechanistically, the reverse mutation of I714S in the PB2 polymerase subunit which was identified in AIV GX13431 reduced the nuclear import efficiency of PB2 protein and interfered with the interactions of PB2-PA/NP that affected the assembly of the viral RNP complex. Our study reveals amino acid mutation at the position of 714 in the nuclear localization signal (NLS) area in PB2 plays an important role in overcoming the barrier from poultry to mammals of the H3N2 canine influenza virus and provides clues for further study of mammalian adaptation mechanism of AIVs.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2024.2387439","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Avian influenza viruses (AIVs) are the origin of multiple mammal influenza viruses. The genetic determinants of AIVs adapted to humans have been widely elucidated, however, the molecular mechanism of cross-species transmission and adaptation of AIVs to canines are still poorly understood. In this study, two H3N2 influenza viruses isolated from a live poultry market (A/environment/Guangxi/13431/2018, GX13431) and a swab sample from a canine (A/canine/Guangdong/0601/2019, GD0601) were used to investigate the possible molecular basis that determined H3N2 AIV adapting to canine. We found that GD0601 exhibited more robust polymerase activity in cells and higher pathogenicity in mice compared with its evolution ancestor H3N2 AIV GX13431. A series of reassortments of the ribonucleoprotein (RNP) complex showed that the PB2 subunit was the crucial factor that conferred high polymerase activity of GD0601, and the substitution of I714S in the PB2 subunit of GD0601 attenuated the replication and pathogenicity in mammal cells and the mouse model. Mechanistically, the reverse mutation of I714S in the PB2 polymerase subunit which was identified in AIV GX13431 reduced the nuclear import efficiency of PB2 protein and interfered with the interactions of PB2-PA/NP that affected the assembly of the viral RNP complex. Our study reveals amino acid mutation at the position of 714 in the nuclear localization signal (NLS) area in PB2 plays an important role in overcoming the barrier from poultry to mammals of the H3N2 canine influenza virus and provides clues for further study of mammalian adaptation mechanism of AIVs.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.