Pub Date : 2025-12-01Epub Date: 2024-12-18DOI: 10.1080/22221751.2024.2440494
Melese Hailu Legese, Daniel Asrat, Adane Mihret, Badrul Hasan, Abraham Aseffa, Göte Swedberg
Healthcare in low- and middle-income countries is becoming problematic due to the emergence of multidrug-resistant bacteria causing serious morbidity and mortality. Klebsiella variicola carrying multiple antimicrobial resistance (AMR) genes were found significantly among sepsis patients in a study done between October 2019 and September 2020 at four Ethiopian hospitals located in the central (Tikur Anbessa and Yekatit 12), southern (Hawassa), and northern (Dessie) parts. Among 1416 sepsis patients, 74 K. variicola isolates were identified using MALDI-TOF, most of them at Dessie (n = 44) and Hawassa (n = 28) hospitals. Whole genome sequencing showed that K. variicola strains identified at Dessie Hospital displayed phylogenetic clonality, carried an IncM1 plasmid and the majority were ST3924. Many K. variicola identified at Hawassa Hospital were clonally clustered and the majority belonged to novel STs and carried IncFIB(K) and IncFII(K) plasmids concurrently. Fifty K. variicola carried ESBL genes while 2 isolates harboured AmpC. Other frequently found genes were aac(3)-lla, blaCTX-M-15, blaTEM-1B, blaLEN2,blaOXA-1, blaSCO-1, catB3, dfrA14, QnrB1, aac(6')-lb-cr and sul2. Virulence genes detected at both sites were mrk operons for biofilm formation and siderophore ABC transporter operons for iron uptake. Capsular alleles varied, with wzi 269 at Dessie and wzi 582 at Hawassa. The isolation of multidrug-resistant K. variicola as an emerging sepsis pathogen calls for strong infection prevention strategies and antimicrobial stewardship supported by advanced bacterial identification techniques.
{"title":"Genomic characterizations of <i>Klebsiella variicola:</i> emerging pathogens identified from sepsis patients in Ethiopian referral hospitals.","authors":"Melese Hailu Legese, Daniel Asrat, Adane Mihret, Badrul Hasan, Abraham Aseffa, Göte Swedberg","doi":"10.1080/22221751.2024.2440494","DOIUrl":"10.1080/22221751.2024.2440494","url":null,"abstract":"<p><p>Healthcare in low- and middle-income countries is becoming problematic due to the emergence of multidrug-resistant bacteria causing serious morbidity and mortality. <i>Klebsiella variicola</i> carrying multiple antimicrobial resistance (AMR) genes were found significantly among sepsis patients in a study done between October 2019 and September 2020 at four Ethiopian hospitals located in the central (Tikur Anbessa and Yekatit 12), southern (Hawassa), and northern (Dessie) parts. Among 1416 sepsis patients, 74 <i>K. variicola</i> isolates were identified using MALDI-TOF, most of them at Dessie (<i>n</i> = 44) and Hawassa (<i>n</i> = 28) hospitals. Whole genome sequencing showed that <i>K. variicola</i> strains identified at Dessie Hospital displayed phylogenetic clonality, carried an IncM1 plasmid and the majority were ST3924. Many <i>K. variicola</i> identified at Hawassa Hospital were clonally clustered and the majority belonged to novel STs and carried IncFIB(K) and IncFII(K) plasmids concurrently. Fifty <i>K. variicola</i> carried ESBL genes while 2 isolates harboured AmpC. Other frequently found genes were <i>aac(3)-lla, bla</i><sub>CTX-M-15</sub>, <i>bla</i><sub>TEM-1B</sub>, <i>bla</i><sub>LEN2,</sub> <i>bla</i><sub>OXA-1</sub>, <i>bla</i><sub>SCO-1</sub>, <i>catB3</i>, <i>dfrA14</i>, <i>QnrB1</i>, <i>aac(6')-lb-cr</i> and <i>sul2</i>. Virulence genes detected at both sites were <i>mrk operons</i> for biofilm formation and siderophore ABC transporter operons for iron uptake. Capsular alleles varied, with <i>wzi 269</i> at Dessie and <i>wzi 582</i> at Hawassa. The isolation of multidrug-resistant <i>K. variicola</i> as an emerging sepsis pathogen calls for strong infection prevention strategies and antimicrobial stewardship supported by advanced bacterial identification techniques.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2440494"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic option for treating methicillin-resistant Staphylococcus aureus (MRSA) infection is urgently required since its resistance to a broad spectrum of currently available antibiotics. Here, we report that isoniazid is able to potentiate the killing efficacy of tigecycline to MRSA. The combination of isoniazid and tigecycline reduces the minimal inhibitory concentration of clinic MRSA strains to tigecycline. The killing activity of tigecycline is further confirmed by killing experiments and murine infection model. We further demonstrate the mechanism that isoniazid increases intracellular accumulation of tigecycline by promoting the influx but limiting the efflux of tigecycline through proton motive force. We also show that isoniazid and tigecycline synergize to increase the abundance of isoniazid-NAD adduct, which in turn damage cell membrane, possibly contributing to the disruption of PMF. Whereas phosphatidylethanolamine and cardiolipin are able to abrogate the synergistic effect of isoniazid plus tigecycline. Thus our study provides a new perspective that antibiotics, e.g. isoniazid, once recognized only to target Mycobacterium tuberculosis, can be repurposed as antibiotic adjuvant to tigecycline, expanding our choice of antibiotic-antibiotic combinations in treating bacterial infectious diseases.
{"title":"Isoniazid potentiates tigecycline to kill methicillin-resistant <i>Staphylococcus aureus</i>.","authors":"Xuan-Wei Chen, Hao-Qing Chen, Jia-Han Wu, Zhi-Han Wang, Yu-Qing Zhou, Si-Qi Tian, Bo Peng","doi":"10.1080/22221751.2024.2434587","DOIUrl":"10.1080/22221751.2024.2434587","url":null,"abstract":"<p><p>Therapeutic option for treating methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infection is urgently required since its resistance to a broad spectrum of currently available antibiotics. Here, we report that isoniazid is able to potentiate the killing efficacy of tigecycline to MRSA. The combination of isoniazid and tigecycline reduces the minimal inhibitory concentration of clinic MRSA strains to tigecycline. The killing activity of tigecycline is further confirmed by killing experiments and murine infection model. We further demonstrate the mechanism that isoniazid increases intracellular accumulation of tigecycline by promoting the influx but limiting the efflux of tigecycline through proton motive force. We also show that isoniazid and tigecycline synergize to increase the abundance of isoniazid-NAD adduct, which in turn damage cell membrane, possibly contributing to the disruption of PMF. Whereas phosphatidylethanolamine and cardiolipin are able to abrogate the synergistic effect of isoniazid plus tigecycline. Thus our study provides a new perspective that antibiotics, e.g. isoniazid, once recognized only to target <i>Mycobacterium tuberculosis</i>, can be repurposed as antibiotic adjuvant to tigecycline, expanding our choice of antibiotic-antibiotic combinations in treating bacterial infectious diseases.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2434587"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-13DOI: 10.1080/22221751.2024.2434567
Chuang Li, Jie Yu, Rahma Issa, Lili Wang, Mingzhe Ning, Shengxia Yin, Jie Li, Chao Wu, Yuxin Chen
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raise concerns about decreased vaccine efficacy, vaccines continue to confer robust protection in humans, implying that immunity beyond neutralization contributes to vaccine efficacy. In addition to neutralization, antibodies can mediate various Fc-dependent effector functions, including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and antibody-dependent cellular cytotoxicity (ADCC). However, the specific role of each Fc-mediated effector function in contributing to COVID-19 disease attenuation in human remains unclear. To fully define the potential immune correlates of Fc-mediated effector functions, we comprehensively analysed the above Fc-mediated effector functions in two study cohorts. In the CoronaVac vaccinee cohort, individuals without breakthrough infection exhibited higher levels of ADCP and ADNP activities with a greater degree of cross-reactivity compared to those who had breakthrough infection. A predictive model was established incorporating ADNP activity and IgG titre, achieving an area under the curve (AUC) of 0.837. In the COVID-19 patient cohort, BA.5-specific ADCP and ADNP responses were significantly reduced in COVID-19 patients with fatal outcomes compared to milder outcomes. The prognostic model incorporating WT, BA.5, and XBB.1.5 spike-specific ADNP demonstrated effective predictive ability, achieving an AUC of 0.890. Meanwhile, transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients in the acute phases of infection highlighted remarkably upregulation of neutrophil activity and phagocytic function, further reinforcing the essential role of ADNP. Collectively, our findings underscored Fc-mediated effector activities, especially neutrophil phagocytosis, as significant antibody biomarkers for the risk of SARS-CoV-2 breakthrough infection and COVID-19 prognosis.
尽管严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)变种引起了人们对疫苗效力下降的担忧,但疫苗仍能为人类提供强有力的保护,这意味着中和以外的免疫力也有助于提高疫苗效力。除中和作用外,抗体还能介导各种依赖 Fc 的效应器功能,包括抗体依赖性细胞吞噬(ADCP)、抗体依赖性中性粒细胞吞噬(ADNP)和抗体依赖性细胞毒性(ADCC)。然而,每种 Fc 介导的效应器功能在减轻人类 COVID-19 疾病中的具体作用仍不清楚。为了全面确定 Fc 介导的效应功能的潜在免疫相关性,我们在两个研究队列中全面分析了上述 Fc 介导的效应功能。在 CoronaVac 疫苗接种者队列中,与有突破性感染的人相比,没有突破性感染的人表现出更高水平的 ADCP 和 ADNP 活性,交叉反应程度更高。结合 ADNP 活性和 IgG 滴度建立的预测模型的曲线下面积 (AUC) 为 0.837。在COVID-19患者队列中,与病情较轻的患者相比,COVID-19致命患者的BA.5特异性ADCP和ADNP反应明显降低。包含 WT、BA.5 和 XBB.1.5 穗特异性 ADNP 的预后模型显示出有效的预测能力,AUC 达到 0.890。同时,COVID-19 患者在感染急性期的外周血单核细胞(PBMCs)转录组分析显示,中性粒细胞活性和吞噬功能显著上调,进一步强化了 ADNP 的重要作用。总之,我们的研究结果表明,Fc介导的效应活性,尤其是中性粒细胞的吞噬功能,是SARS-CoV-2突破性感染风险和COVID-19预后的重要抗体生物标志物。
{"title":"CoronaVac-induced antibodies that facilitate Fc-mediated neutrophil phagocytosis track with COVID-19 disease resolution.","authors":"Chuang Li, Jie Yu, Rahma Issa, Lili Wang, Mingzhe Ning, Shengxia Yin, Jie Li, Chao Wu, Yuxin Chen","doi":"10.1080/22221751.2024.2434567","DOIUrl":"10.1080/22221751.2024.2434567","url":null,"abstract":"<p><p>Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raise concerns about decreased vaccine efficacy, vaccines continue to confer robust protection in humans, implying that immunity beyond neutralization contributes to vaccine efficacy. In addition to neutralization, antibodies can mediate various Fc-dependent effector functions, including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and antibody-dependent cellular cytotoxicity (ADCC). However, the specific role of each Fc-mediated effector function in contributing to COVID-19 disease attenuation in human remains unclear. To fully define the potential immune correlates of Fc-mediated effector functions, we comprehensively analysed the above Fc-mediated effector functions in two study cohorts. In the CoronaVac vaccinee cohort, individuals without breakthrough infection exhibited higher levels of ADCP and ADNP activities with a greater degree of cross-reactivity compared to those who had breakthrough infection. A predictive model was established incorporating ADNP activity and IgG titre, achieving an area under the curve (AUC) of 0.837. In the COVID-19 patient cohort, BA.5-specific ADCP and ADNP responses were significantly reduced in COVID-19 patients with fatal outcomes compared to milder outcomes. The prognostic model incorporating WT, BA.5, and XBB.1.5 spike-specific ADNP demonstrated effective predictive ability, achieving an AUC of 0.890. Meanwhile, transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients in the acute phases of infection highlighted remarkably upregulation of neutrophil activity and phagocytic function, further reinforcing the essential role of ADNP. Collectively, our findings underscored Fc-mediated effector activities, especially neutrophil phagocytosis, as significant antibody biomarkers for the risk of SARS-CoV-2 breakthrough infection and COVID-19 prognosis.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2434567"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High variability of influenza B virus (IBV) hemagglutinin (HA) impairs the cross- neutralization ability of vaccines, leading to reduce efficacy. We identified significant differences in cross-neutralization between IBV strains B/Wyoming/06/2014 and B/Brisbane/60/2008, which differ in only three amino acid residues. The 214 T point mutation was found to dramatically enhance cross-neutralization (>10-fold). Antibody-based reverse validation also revealed that this mutation significantly increased the neutralization capacity (500-62,500-fold). Furthermore, monitoring revealed that the mutation rate at this site has reached its highest level in nearly 20 years, with a prevalence exceeding 80% in sequences submitted from certain regions. Our findings provide new evidence for the selection of vaccine strains with improved cross- neutralization effects, which will aid the development of broad-spectrum vaccines by modifying minimal antigenic epitopes.
{"title":"A single mutation at position 214 of influenza B hemagglutinin enhances cross-neutralization.","authors":"Ziqi Cheng, Yeqing Sun, Yanru Shen, Xi Wu, Ling Pan, Hao Wu, Yunbo Bai, Chenyan Zhao, Junfeng Ma, Weijin Huang","doi":"10.1080/22221751.2025.2467770","DOIUrl":"10.1080/22221751.2025.2467770","url":null,"abstract":"<p><p>High variability of influenza B virus (IBV) hemagglutinin (HA) impairs the cross- neutralization ability of vaccines, leading to reduce efficacy. We identified significant differences in cross-neutralization between IBV strains B/Wyoming/06/2014 and B/Brisbane/60/2008, which differ in only three amino acid residues. The 214 T point mutation was found to dramatically enhance cross-neutralization (>10-fold). Antibody-based reverse validation also revealed that this mutation significantly increased the neutralization capacity (500-62,500-fold). Furthermore, monitoring revealed that the mutation rate at this site has reached its highest level in nearly 20 years, with a prevalence exceeding 80% in sequences submitted from certain regions. Our findings provide new evidence for the selection of vaccine strains with improved cross- neutralization effects, which will aid the development of broad-spectrum vaccines by modifying minimal antigenic epitopes.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2467770"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A 2019 nationwide study in Japan revealed the predominant methicillin-resistant Staphylococcus aureus (MRSA) types in bloodstream infections (BSIs) to be sequence type (ST)8-carrying SCCmec type IV (ST8-MRSA-IV) and clonal complex 1-carrying SCCmec type IV (CC1-MRSA-IV). However, detailed patient characteristics and how these MRSA types evolve over time remain largely unknown. In this long-term single-center study, MRSA strains isolated from blood cultures at Nagasaki University Hospital from 2012 to 2019 were sequenced and analyzed. Additionally, we compared the SCCmec types and patient characteristics identified in this study with previous data from our hospital spanning 2003-2007 and 2008-2011. Over this 16-year period, SCCmec type II decreased significantly from 79.2% to 15.5%, while type IV increased from 18.2% to 65.5%. This shift in SCCmec types was associated with notable changes in severity and outcomes; the sequential organ failure assessment (SOFA) score decreased from 5.8 to 3.1; in-hospital mortality declined from 39.8% to 15.5%. In contrast, no significant changes in patient demographics, such as age, sex, or underlying diseases, were observed. Between 2012 and 2019, the major combinations of SCCmec type and sequence type were ST8-MRSA-IV, ST8-MRSA-I, CC1-MRSA-IV, and ST5-MRSA-II. Additionally, ST8-MRSA-IV was divided into CA-MRSA/J, t5071-ST8-MRSA-IV, and USA300-like clone based on the results of molecular analysis. These major combinations showed similar drug resistance patterns, molecular characteristics, and phylogenetic features to those identified in nationwide surveillance. This study highlights the evolving nature of MRSA types in bloodstream infections, correlating with improved patient outcomes over time.
{"title":"Long-term impact of molecular epidemiology shifts of methicillin-resistant <i>Staphylococcus aureus</i> on severity and mortality of bloodstream infection.","authors":"Norihito Kaku, Masaki Ishige, Go Yasutake, Daisuke Sasaki, Kenji Ota, Fujiko Mitsumoto-Kaseida, Kosuke Kosai, Hiroo Hasegawa, Koichi Izumikawa, Hiroshi Mukae, Katsunori Yanagihara","doi":"10.1080/22221751.2024.2449085","DOIUrl":"10.1080/22221751.2024.2449085","url":null,"abstract":"<p><p>A 2019 nationwide study in Japan revealed the predominant methicillin-resistant Staphylococcus aureus (MRSA) types in bloodstream infections (BSIs) to be sequence type (ST)8-carrying SCC<i>mec</i> type IV (ST8-MRSA-IV) and clonal complex 1-carrying SCC<i>mec</i> type IV (CC1-MRSA-IV). However, detailed patient characteristics and how these MRSA types evolve over time remain largely unknown. In this long-term single-center study, MRSA strains isolated from blood cultures at Nagasaki University Hospital from 2012 to 2019 were sequenced and analyzed. Additionally, we compared the SCC<i>mec</i> types and patient characteristics identified in this study with previous data from our hospital spanning 2003-2007 and 2008-2011. Over this 16-year period, SCC<i>mec</i> type II decreased significantly from 79.2% to 15.5%, while type IV increased from 18.2% to 65.5%. This shift in SCC<i>mec</i> types was associated with notable changes in severity and outcomes; the sequential organ failure assessment (SOFA) score decreased from 5.8 to 3.1; in-hospital mortality declined from 39.8% to 15.5%. In contrast, no significant changes in patient demographics, such as age, sex, or underlying diseases, were observed. Between 2012 and 2019, the major combinations of SCC<i>mec</i> type and sequence type were ST8-MRSA-IV, ST8-MRSA-I, CC1-MRSA-IV, and ST5-MRSA-II. Additionally, ST8-MRSA-IV was divided into CA-MRSA/J, t5071-ST8-MRSA-IV, and USA300-like clone based on the results of molecular analysis. These major combinations showed similar drug resistance patterns, molecular characteristics, and phylogenetic features to those identified in nationwide surveillance. This study highlights the evolving nature of MRSA types in bloodstream infections, correlating with improved patient outcomes over time.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":"14 1","pages":"2449085"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-12DOI: 10.1080/22221751.2024.2449083
Wanying Yang, Wujie Zhou, Bo Liang, Xiaojun Hu, Shen Wang, Zhenshan Wang, Tiecheng Wang, Xianzhu Xia, Na Feng, Yongkun Zhao, Feihu Yan
Marburg virus disease (MVD) is a severe infectious disease caused by the Marburg virus (MARV), posing a significant threat to humans. MARV needs to be operated under strict biosafety Level 4 (BSL-4) laboratory conditions. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV. In this study, we constructed a recombinant vesicular stomatitis virus (VSV) expressing the Marburg virus glycoprotein (VSV-MARV/GP). Syrian hamsters infected with VSV-MARV/GP presented symptoms such as thrombocytopenia, lymphopenia, haemophilia, and multiorgan failure, developing a severe systemic disease akin to that observed in human MARV patients. Notably, the pathogenicity was found to be species-specific, age-related, sex-associated, and challenge route-dependent. Subsequently, the therapeutic efficacy of the MR191 monoclonal antibody was validated in this model. In summary, this alternative model is an effective tool for rapidly screening medical countermeasures against MARV GP in vivo under BSL-2 conditions.
马尔堡病毒病(MVD)是由马尔堡病毒(MARV)引起的以发热和大出血为特征的严重传染病,死亡率可达90%,对人类构成重大威胁。MARV的关键在于它被归类为生物安全4级(BSL-4)病原体,这需要严格的实验条件和大量的资金。因此,迫切需要可获得和实用的动物模型来推进MARV的预防和治疗策略。本研究构建了表达马尔堡病毒糖蛋白(VSV- marv /GP)的重组水疱性口炎病毒(VSV),并利用其作为替代物诱导仓鼠致死性感染。感染VSV-MARV/GP的叙利亚仓鼠表现出血小板减少、淋巴细胞减少、血友病和多器官衰竭等症状,发展为与人类MARV患者类似的严重系统性疾病,所有动物在感染后2至3天死于感染(dpi)。值得注意的是,VSV-MARV/GP的致病性具有物种特异性、年龄相关性、性别相关性和攻毒途径依赖性。随后,在该模型中验证了MR191单克隆抗体的治疗效果。总之,该替代模型是在BSL-2条件下快速筛选体内MARV GP医学对策的有效工具。
{"title":"A surrogate BSL2-compliant infection model recapitulating key aspects of human Marburg virus disease.","authors":"Wanying Yang, Wujie Zhou, Bo Liang, Xiaojun Hu, Shen Wang, Zhenshan Wang, Tiecheng Wang, Xianzhu Xia, Na Feng, Yongkun Zhao, Feihu Yan","doi":"10.1080/22221751.2024.2449083","DOIUrl":"10.1080/22221751.2024.2449083","url":null,"abstract":"<p><p>Marburg virus disease (MVD) is a severe infectious disease caused by the Marburg virus (MARV), posing a significant threat to humans. MARV needs to be operated under strict biosafety Level 4 (BSL-4) laboratory conditions. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV. In this study, we constructed a recombinant vesicular stomatitis virus (VSV) expressing the Marburg virus glycoprotein (VSV-MARV/GP). Syrian hamsters infected with VSV-MARV/GP presented symptoms such as thrombocytopenia, lymphopenia, haemophilia, and multiorgan failure, developing a severe systemic disease akin to that observed in human MARV patients. Notably, the pathogenicity was found to be species-specific, age-related, sex-associated, and challenge route-dependent. Subsequently, the therapeutic efficacy of the MR191 monoclonal antibody was validated in this model. In summary, this alternative model is an effective tool for rapidly screening medical countermeasures against MARV GP in vivo under BSL-2 conditions.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2449083"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-27DOI: 10.1080/22221751.2025.2451718
Alexandre D'Halluin, Denisa Petráčková, Ivana Čurnová, Jakub Držmíšek, Jan Čapek, Peggy Bouquet, Loïc Henin, Rudy Antoine, Loïc Coutte, Camille Locht, Branislav Večerek, David Hot
Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In Bordetella pertussis, the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global B. pertussis population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of B. pertussis. Here, we describe the regulatory RNA Rfi2, which is transcribed from the Pout promoter of the IS481 gene BP1118 antisense to the adjacent fim2 gene encoding the major serotype 2 fimbrial subunit of B. pertussis. Among the classical bordetellae, Rfi2 is unique to B. pertussis, suggesting its specific role in virulence. We show that Rfi2 RNA attenuates fim2 transcription and, consequently, the production of the Fim2 protein. Interestingly, the mutant that does not produce Rfi2 displayed significantly increased cytotoxicity towards human macrophages compared to the parental strain. This observation suggests that the Rfi2-mediated reduction in cytotoxicity represents an evolutionary adaptation of B. pertussis that fine-tunes its interaction with the human host. Given the immunogenicity of Fim2, we further hypothesize that Rfi2-mediated modulation of Fim2 production contributes to immune evasion. To our knowledge, Rfi2 represents the first functionally characterized IS element-driven antisense RNA that modulates the expression of a virulence gene.
{"title":"An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of <i>Bordetella pertussis</i>.","authors":"Alexandre D'Halluin, Denisa Petráčková, Ivana Čurnová, Jakub Držmíšek, Jan Čapek, Peggy Bouquet, Loïc Henin, Rudy Antoine, Loïc Coutte, Camille Locht, Branislav Večerek, David Hot","doi":"10.1080/22221751.2025.2451718","DOIUrl":"10.1080/22221751.2025.2451718","url":null,"abstract":"<p><p>Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In <i>Bordetella pertussis</i>, the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global <i>B. pertussis</i> population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of <i>B. pertussis</i>. Here, we describe the regulatory RNA Rfi2, which is transcribed from the P<sub>out</sub> promoter of the IS<i>481</i> gene <i>BP1118</i> antisense to the adjacent <i>fim2</i> gene encoding the major serotype 2 fimbrial subunit of <i>B. pertussis</i>. Among the classical bordetellae, Rfi2 is unique to <i>B. pertussis</i>, suggesting its specific role in virulence. We show that Rfi2 RNA attenuates <i>fim2</i> transcription and, consequently, the production of the Fim2 protein. Interestingly, the mutant that does not produce Rfi2 displayed significantly increased cytotoxicity towards human macrophages compared to the parental strain. This observation suggests that the Rfi2-mediated reduction in cytotoxicity represents an evolutionary adaptation of <i>B. pertussis</i> that fine-tunes its interaction with the human host. Given the immunogenicity of Fim2, we further hypothesize that Rfi2-mediated modulation of Fim2 production contributes to immune evasion. To our knowledge, Rfi2 represents the first functionally characterized IS element-driven antisense RNA that modulates the expression of a virulence gene.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2451718"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antimicrobial resistance has recently increased due to emerging carbapenem-resistant Klebsiella pneumoniae and extended-spectrum β-lactamase (ESBL)-producing strains of K. pneumoniae, especially among hypermucoviscous K. pneumoniae (hmKp) strains. To evaluate the prevalence of ESBL-producing and carbapenem-resistant strains in hmKp and non-hmKp clinical isolates through a systematic review and meta-analysis. We searched PubMed, Scopus, and Cochrane Library databases from January 2000 to June 2023. Clinical and in vivo/in vitro studies involving confirmed K. pneumoniae clinical isolates differentiated into hmKP and non-hmKP strains based on string test results. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated based on the number of individuals in each target group. Forest plots were used to visualize the effect sizes and 95% CIs of individual studies estimated using the inverse variance and DerSimonian - Laird methods with fixed - and random-effects models, respectively. Heterogeneity was assessed using Cochran's Q test (I2 ≥ 50%). Fifteen studies comprising 2049 clinical isolates of K. pneumoniae met the inclusion criteria. Meta-analysis revealed that hmKp strains were associated with a significantly lower prevalence of ESBL-producing strains (pooled OR: 0.26, 95% CI: 0.11-0.63, P = 0.003) and a slightly lower prevalence of carbapenem-resistant strains than non-hmKp strains (pooled OR: 0.63, 95% CI: 0.40-0.97, P = 0.038). hmKp strains exhibited lower and slightly lower prevalence of ESBL production and carbapenem resistance, respectively, than non-hmKp strains. However, given the rising prevalence of ESBL-producing and carbapenem-resistant hmKp strains, patients infected by string-test-positive K. pneumoniae must be managed prudently, considering the potential for highly resistant strains.
最近,由于碳青霉烯耐药肺炎克雷伯菌和肺炎克雷伯菌的广谱β-内酰胺酶(ESBL)产生菌株,特别是高黏性肺炎克雷伯菌(hmKp)菌株的出现,抗生素耐药性有所增加。通过系统回顾和meta分析,评估hmKp和非hmKp临床分离株中产生esbl和碳青霉烯类耐药菌株的流行情况。我们检索了PubMed、Scopus和Cochrane图书馆2000年1月至2023年6月的数据库。临床和体内/体外研究涉及确诊肺炎克雷伯菌临床分离株,根据串检测结果区分为hmKP和非hmKP菌株。优势比(ORs)和95%置信区间(ci)根据每个目标组的个体数计算。森林图用于可视化单个研究的效应大小和95% ci,分别使用固定和随机效应模型的逆方差和dersimonan - laird方法估计。异质性采用Cochran’s Q检验(I2≥50%)。包括2049株肺炎克雷伯菌临床分离株的15项研究符合纳入标准。荟萃分析显示,与非hmKp菌株相比,hmKp菌株与产esbls菌株的流行率显著降低(合并OR: 0.26, 95% CI: 0.11-0.63, P = 0.003),且碳青霉烯类耐药菌株的流行率略低于非hmKp菌株(合并OR: 0.63, 95% CI: 0.40-0.97, P = 0.038)。与非hmKp菌株相比,hmKp菌株对ESBL的产生率较低,对碳青霉烯类药物的耐药性略低。然而,鉴于产生esbl和耐碳青霉烯的hmKp菌株的流行率不断上升,必须谨慎管理感染肺炎克雷伯菌的患者,考虑到可能出现高耐药菌株。
{"title":"Antimicrobial resistance in hypermucoviscous and non-hypermucoviscous <i>Klebsiella pneumoniae</i>: a systematic review and meta-analysis.","authors":"Hiroki Namikawa, Ken-Ichi Oinuma, Yukihiro Kaneko, Hiroshi Kakeya, Taichi Shuto","doi":"10.1080/22221751.2024.2438657","DOIUrl":"10.1080/22221751.2024.2438657","url":null,"abstract":"<p><p>Antimicrobial resistance has recently increased due to emerging carbapenem-resistant <i>Klebsiella pneumoniae</i> and extended-spectrum β-lactamase (ESBL)-producing strains of <i>K. pneumoniae</i>, especially among hypermucoviscous <i>K. pneumoniae</i> (hmKp) strains. To evaluate the prevalence of ESBL-producing and carbapenem-resistant strains in hmKp and non-hmKp clinical isolates through a systematic review and meta-analysis. We searched PubMed, Scopus, and Cochrane Library databases from January 2000 to June 2023. Clinical and in vivo/in vitro studies involving confirmed <i>K. pneumoniae</i> clinical isolates differentiated into hmKP and non-hmKP strains based on string test results. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated based on the number of individuals in each target group. Forest plots were used to visualize the effect sizes and 95% CIs of individual studies estimated using the inverse variance and DerSimonian - Laird methods with fixed - and random-effects models, respectively. Heterogeneity was assessed using Cochran's Q test (<i>I<sup>2</sup></i> ≥ 50%). Fifteen studies comprising 2049 clinical isolates of <i>K. pneumoniae</i> met the inclusion criteria. Meta-analysis revealed that hmKp strains were associated with a significantly lower prevalence of ESBL-producing strains (pooled OR: 0.26, 95% CI: 0.11-0.63, <i>P</i> = 0.003) and a slightly lower prevalence of carbapenem-resistant strains than non-hmKp strains (pooled OR: 0.63, 95% CI: 0.40-0.97, <i>P</i> = 0.038). hmKp strains exhibited lower and slightly lower prevalence of ESBL production and carbapenem resistance, respectively, than non-hmKp strains. However, given the rising prevalence of ESBL-producing and carbapenem-resistant hmKp strains, patients infected by string-test-positive <i>K. pneumoniae</i> must be managed prudently, considering the potential for highly resistant strains.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2438657"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-02-21DOI: 10.1080/22221751.2025.2466705
Kyungmin Park, Minsoo Shin, Augustine Natasha, Jongwoo Kim, Juyoung Noh, Seong-Gyu Kim, Bohyeon Kim, Jieun Park, Ye-Rin Seo, Hee-Kyung Cho, Kwan Soo Byun, Ji Hoon Kim, Young-Sun Lee, Jung Ok Shim, Won-Keun Kim, Jin-Won Song
Coronaviruses (CoVs) pose a significant threat to public health, causing a wide spectrum of clinical manifestations and outcomes. Beyond precipitating global outbreaks, Human CoVs (HCoVs) are frequently found among patients with respiratory infections. To date, limited attention has been directed towards alphacoronaviruses due to their low prevalence and fatality rates. Nasal swab and serum samples were collected from a paediatric patient, and an epidemiological survey was conducted. Retrospective surveillance investigated the molecular prevalence of CoV in 880 rodents collected in the Republic of Korea (ROK) from 2018 to 2022. Next-generation sequencing (NGS) and phylogenetic analyses characterized the novel HCoV and closely related CoVs harboured by Apodemus spp. On 15 December 2022, a 103-day-old infant was admitted with fever, cough, sputum production, and rhinorrhea, diagnosed with human parainfluenza virus 1 (HPIV-1) and rhinovirus co-infection. Elevated AST/ALT levels indicated transient liver dysfunction on the fourth day of hospitalization. Metagenomic NGS (mNGS) identified a novel HCoV in nasal swab and serum samples. Retrospective rodent surveillance and phylogenetic analyses showed the novel HCoV was closely related to alphacoronaviruses carried by Apodemus spp. in the ROK and China. This case highlights the potential of mNGS to identify emerging pathogens and raises awareness of possible extra-respiratory manifestations, such as transient liver dysfunction, associated with novel HCoVs. While the liver injury in this case may be attributable to the novel HCoV, further research is necessary to elucidate its clinical significance, epidemiological prevalence, and zoonotic origins.
{"title":"Novel human coronavirus in an infant patient with pneumonia, Republic of Korea.","authors":"Kyungmin Park, Minsoo Shin, Augustine Natasha, Jongwoo Kim, Juyoung Noh, Seong-Gyu Kim, Bohyeon Kim, Jieun Park, Ye-Rin Seo, Hee-Kyung Cho, Kwan Soo Byun, Ji Hoon Kim, Young-Sun Lee, Jung Ok Shim, Won-Keun Kim, Jin-Won Song","doi":"10.1080/22221751.2025.2466705","DOIUrl":"10.1080/22221751.2025.2466705","url":null,"abstract":"<p><p>Coronaviruses (CoVs) pose a significant threat to public health, causing a wide spectrum of clinical manifestations and outcomes. Beyond precipitating global outbreaks, Human CoVs (HCoVs) are frequently found among patients with respiratory infections. To date, limited attention has been directed towards alphacoronaviruses due to their low prevalence and fatality rates. Nasal swab and serum samples were collected from a paediatric patient, and an epidemiological survey was conducted. Retrospective surveillance investigated the molecular prevalence of CoV in 880 rodents collected in the Republic of Korea (ROK) from 2018 to 2022. Next-generation sequencing (NGS) and phylogenetic analyses characterized the novel HCoV and closely related CoVs harboured by <i>Apodemus</i> spp. On 15 December 2022, a 103-day-old infant was admitted with fever, cough, sputum production, and rhinorrhea, diagnosed with human parainfluenza virus 1 (HPIV-1) and rhinovirus co-infection. Elevated AST/ALT levels indicated transient liver dysfunction on the fourth day of hospitalization. Metagenomic NGS (mNGS) identified a novel HCoV in nasal swab and serum samples. Retrospective rodent surveillance and phylogenetic analyses showed the novel HCoV was closely related to alphacoronaviruses carried by <i>Apodemus</i> spp. in the ROK and China. This case highlights the potential of mNGS to identify emerging pathogens and raises awareness of possible extra-respiratory manifestations, such as transient liver dysfunction, associated with novel HCoVs. While the liver injury in this case may be attributable to the novel HCoV, further research is necessary to elucidate its clinical significance, epidemiological prevalence, and zoonotic origins.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2466705"},"PeriodicalIF":8.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}