The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals
Yajie Li, Yiqiong Liu, Guiping Ran, Yue Yu, Yifan Zhou, Yuxian Zhu, Yujuan Du, Limin Pi
{"title":"The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals","authors":"Yajie Li, Yiqiong Liu, Guiping Ran, Yue Yu, Yifan Zhou, Yuxian Zhu, Yujuan Du, Limin Pi","doi":"10.1111/nph.20056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n \n </p><ul>\n \n \n <li>During <i>Arabidopsis</i> embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated.</li>\n \n \n <li>In this study, we investigated the function of <i>DELAYED GREENING 1</i> (<i>DG1</i>) in <i>Arabidopsis</i> embryogenesis using a newly identified <i>dg1-3</i> mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of <i>WUSCHEL</i> (<i>WUS</i>) and <i>SHOOT MERISTEMLESS</i> (<i>STM</i>) expression. This finding pinpoints the essential role of <i>DG1</i> in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of <i>DG1</i> may not depend on its role in plastid RNA editing.</li>\n \n \n <li>Nevertheless, we demonstrated that the <i>DG1</i> function in establishing bilateral symmetry is genetically mediated by <i>GENOMES UNCOUPLED 1</i> (<i>GUN1</i>), which represses the transition process in <i>dg1-3</i> embryos.</li>\n \n \n <li>Collectively, our results reveal that <i>DG1</i> functionally antagonizes <i>GUN1</i> to promote the transition of the <i>Arabidopsis</i> embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.</li>\n </ul>\n \n </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.20056","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During Arabidopsis embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated.
In this study, we investigated the function of DELAYED GREENING 1 (DG1) in Arabidopsis embryogenesis using a newly identified dg1-3 mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) expression. This finding pinpoints the essential role of DG1 in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of DG1 may not depend on its role in plastid RNA editing.
Nevertheless, we demonstrated that the DG1 function in establishing bilateral symmetry is genetically mediated by GENOMES UNCOUPLED 1 (GUN1), which represses the transition process in dg1-3 embryos.
Collectively, our results reveal that DG1 functionally antagonizes GUN1 to promote the transition of the Arabidopsis embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.