Positive regulation of BBX11 by NAC053 confers stomatal and apoplastic immunity against bacterial infection in Arabidopsis

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2025-03-20 DOI:10.1111/nph.70096
Sheng Luo, Charles Tetteh, Zhiqiang Song, Cheng Zhang, Pinyuan Jin, Xingqian Hao, Yingjun Liu, Shating Ge, Jiao Chen, Keke Ye, Kang Wang, Ting Zhang, Huajian Zhang
{"title":"Positive regulation of BBX11 by NAC053 confers stomatal and apoplastic immunity against bacterial infection in Arabidopsis","authors":"Sheng Luo, Charles Tetteh, Zhiqiang Song, Cheng Zhang, Pinyuan Jin, Xingqian Hao, Yingjun Liu, Shating Ge, Jiao Chen, Keke Ye, Kang Wang, Ting Zhang, Huajian Zhang","doi":"10.1111/nph.70096","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Stomatal immunity and apoplastic immunity are critical for preventing microbial phytopathogenesis. However, the specific regulatory mechanisms of these resistances remain unclear.</li>\n<li>In this study, a BBX11 transcription factor (TF) was identified in <i>Arabidopsis</i> and was found to participate in stomatal and apoplast immunity. Phenotypic, biochemical, and genetic analyses revealed that NAC053 contributed to <i>Arabidopsis</i> resistance against <i>Pseudomonas syringae</i> pv <i>tomato</i> DC3000 (<i>Pst</i> DC3000) by positively regulating <i>BBX11</i>.</li>\n<li>BBX11 TF that was expressed constitutively in guard cells acts as a positive regulator of plant defense against <i>Pst</i> DC3000 through the suppression of coronatine (COR)-induced stomatal reopening, mitigating the virulence of COR and alleviating COR-triggered systemic susceptibility in the apoplast. BBX11 was found to be involved in PTI responses induced by flg22, such as stomatal closure, reactive oxygen species accumulation, MAPK activation, and callose deposition, thereby enhancing disease resistance. Yeast one-hybrid screening identified NAC053 as a potential TF that interacted with the promoter of <i>BBX11</i>. NAC053 also positively regulated resistance to <i>Pst</i> DC3000.</li>\n<li>These findings underscore the significance of transcriptional activation of <i>BBX11</i> by NAC053 in stomatal and apoplastic immunity against <i>Pst</i> DC3000, enhancing understanding of plant regulatory mechanisms in response to bacterial pathogens.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70096","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

  • Stomatal immunity and apoplastic immunity are critical for preventing microbial phytopathogenesis. However, the specific regulatory mechanisms of these resistances remain unclear.
  • In this study, a BBX11 transcription factor (TF) was identified in Arabidopsis and was found to participate in stomatal and apoplast immunity. Phenotypic, biochemical, and genetic analyses revealed that NAC053 contributed to Arabidopsis resistance against Pseudomonas syringae pv tomato DC3000 (Pst DC3000) by positively regulating BBX11.
  • BBX11 TF that was expressed constitutively in guard cells acts as a positive regulator of plant defense against Pst DC3000 through the suppression of coronatine (COR)-induced stomatal reopening, mitigating the virulence of COR and alleviating COR-triggered systemic susceptibility in the apoplast. BBX11 was found to be involved in PTI responses induced by flg22, such as stomatal closure, reactive oxygen species accumulation, MAPK activation, and callose deposition, thereby enhancing disease resistance. Yeast one-hybrid screening identified NAC053 as a potential TF that interacted with the promoter of BBX11. NAC053 also positively regulated resistance to Pst DC3000.
  • These findings underscore the significance of transcriptional activation of BBX11 by NAC053 in stomatal and apoplastic immunity against Pst DC3000, enhancing understanding of plant regulatory mechanisms in response to bacterial pathogens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
The genomic insights of intertidal adaptation in Bryopsis corticulans Owen Atkin Positive regulation of BBX11 by NAC053 confers stomatal and apoplastic immunity against bacterial infection in Arabidopsis An ice-binding protein from the glacier ice alga Ancylonema nordenskioeldii Genetic variation in the honesty of plants to their pollinators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1