Identification of climatic tipping points and transitions in Chinese loess grain-size records utilizing nonlinear time series analysis

IF 1.9 3区 地球科学 Q3 GEOGRAPHY, PHYSICAL Quaternary International Pub Date : 2024-06-25 DOI:10.1016/j.quaint.2024.06.011
{"title":"Identification of climatic tipping points and transitions in Chinese loess grain-size records utilizing nonlinear time series analysis","authors":"","doi":"10.1016/j.quaint.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>As one of the most important terrestrial sediments, Chinese loess provides valuable information on regional and global climatic and environmental changes and holds great potential for studying on nonlinear behaviors of the East Asian monsoon system. Utilizing objective and quantitative methods to identify tipping points and climate transitions in paleoclimatic records can help us understand the climatic change in the Chinese Loess Plateau (CLP). This study explores critical tipping points and nonlinear climate transitions within the CLP using the Chiloparts record, a comprehensive 2600-ka paleoclimate dataset. We pinpointed potential tipping points using recurrence quantification analysis and the augmented Kolmogorov-Smirnov test, ultimately leading to 15 critical tipping points. We argued that these 15 tipping points represent some of the most significant climatic changes recorded in the Chinese loess paleoclimate record. Employing recurrence quantification analysis, recurrence networks, and visibility graphs, we also identified several climate transitions and provided some nonlinear information, including the Mid-Pleistocene Transition (MPT) as well as the Mid-Brunhes Transition (MBT). We particularly highlight a significant climatic regime transition around 500 ka that may reflect a nonlinear response to variations in the Atlantic Meridional Overturning Circulation (AMOC). Our research also contributes to the understanding of the complex interplay between loess deposition, environmental change, and tectonic activity, emphasizing the need for further investigations to elucidate the mechanisms driving these transitions.</p></div>","PeriodicalId":49644,"journal":{"name":"Quaternary International","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary International","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040618224002003","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the most important terrestrial sediments, Chinese loess provides valuable information on regional and global climatic and environmental changes and holds great potential for studying on nonlinear behaviors of the East Asian monsoon system. Utilizing objective and quantitative methods to identify tipping points and climate transitions in paleoclimatic records can help us understand the climatic change in the Chinese Loess Plateau (CLP). This study explores critical tipping points and nonlinear climate transitions within the CLP using the Chiloparts record, a comprehensive 2600-ka paleoclimate dataset. We pinpointed potential tipping points using recurrence quantification analysis and the augmented Kolmogorov-Smirnov test, ultimately leading to 15 critical tipping points. We argued that these 15 tipping points represent some of the most significant climatic changes recorded in the Chinese loess paleoclimate record. Employing recurrence quantification analysis, recurrence networks, and visibility graphs, we also identified several climate transitions and provided some nonlinear information, including the Mid-Pleistocene Transition (MPT) as well as the Mid-Brunhes Transition (MBT). We particularly highlight a significant climatic regime transition around 500 ka that may reflect a nonlinear response to variations in the Atlantic Meridional Overturning Circulation (AMOC). Our research also contributes to the understanding of the complex interplay between loess deposition, environmental change, and tectonic activity, emphasizing the need for further investigations to elucidate the mechanisms driving these transitions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非线性时间序列分析识别中国黄土粒度记录中的气候临界点和过渡点
作为最重要的陆地沉积物之一,中国黄土提供了有关区域和全球气候与环境变化的宝贵信息,在研究东亚季风系统的非线性行为方面具有巨大潜力。利用客观的定量方法识别古气候记录中的临界点和气候转换,有助于我们了解中国黄土高原的气候变化。本研究利用 Chiloparts 记录(一个 2600ka 的综合古气候数据集)探讨了中国黄土高原的关键临界点和非线性气候转换。我们利用递推定量分析和增强的 Kolmogorov-Smirnov 检验确定了潜在的临界点,最终确定了 15 个临界点。我们认为,这 15 个临界点代表了中国黄土古气候记录中记录的一些最重要的气候变化。我们还利用递推量化分析、递推网络和能见度图,确定了几个气候转变,并提供了一些非线性信息,包括中更新世转变(MPT)和中布鲁内斯转变(MBT)。我们特别强调了 500 ka 附近的一个重要气候制度转变,它可能反映了对大西洋经向翻转环流(AMOC)变化的非线性响应。我们的研究还有助于理解黄土沉积、环境变化和构造活动之间复杂的相互作用,强调了进一步研究以阐明这些过渡的驱动机制的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quaternary International
Quaternary International 地学-地球科学综合
CiteScore
5.60
自引率
4.50%
发文量
336
审稿时长
3 months
期刊介绍: Quaternary International is the official journal of the International Union for Quaternary Research. The objectives are to publish a high quality scientific journal under the auspices of the premier Quaternary association that reflects the interdisciplinary nature of INQUA and records recent advances in Quaternary science that appeal to a wide audience. This series will encompass all the full spectrum of the physical and natural sciences that are commonly employed in solving Quaternary problems. The policy is to publish peer refereed collected research papers from symposia, workshops and meetings sponsored by INQUA. In addition, other organizations may request publication of their collected works pertaining to the Quaternary.
期刊最新文献
Editorial Board Editorial Board Editorial Board Editorial Board Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1