Single-layer encapsulation film with CaO absorbent by solution process

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2024-08-10 DOI:10.1016/j.orgel.2024.107119
Hyesu Lee, Seong Jun Son, Jae-Woong Yu
{"title":"Single-layer encapsulation film with CaO absorbent by solution process","authors":"Hyesu Lee,&nbsp;Seong Jun Son,&nbsp;Jae-Woong Yu","doi":"10.1016/j.orgel.2024.107119","DOIUrl":null,"url":null,"abstract":"<div><p>A method for preparing a single-layer encapsulation film using an organic-inorganic hybrid precursor solution processing was investigated. The film was created using a commodity epoxy and graphene oxide to ensure cost-effectiveness. Fast curing and annealing techniques, including microwave and intense pulsed light exposure, were employed. Calcium oxide nanoparticles were incorporated as a special moisture absorbent to improve the film's barrier properties. The barrier performance of the single layer encapsulation film was considerably enhanced by post-treatment of these nanoparticles. The characterization of the calcium oxide nanoparticles after post-treatment was performed using transmission electron microscopy with energy-dispersive X-ray spectroscopy, FT-IR, Brunauer-Emmett-Teller test. The composite epoxy encapsulation film, incorporating graphene oxide and post-treated calcium oxide nanoparticles, reduced water permeability approximately 400 times compared to the neat epoxy encapsulation film. This substantial improvement makes it suitable for use in flexible disposable electronics. The enhanced water vapor blocking efficiency is attributed to the combined effect of pathway block by graphene oxide and moisture absorption by calcium oxide.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"133 ","pages":"Article 107119"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A method for preparing a single-layer encapsulation film using an organic-inorganic hybrid precursor solution processing was investigated. The film was created using a commodity epoxy and graphene oxide to ensure cost-effectiveness. Fast curing and annealing techniques, including microwave and intense pulsed light exposure, were employed. Calcium oxide nanoparticles were incorporated as a special moisture absorbent to improve the film's barrier properties. The barrier performance of the single layer encapsulation film was considerably enhanced by post-treatment of these nanoparticles. The characterization of the calcium oxide nanoparticles after post-treatment was performed using transmission electron microscopy with energy-dispersive X-ray spectroscopy, FT-IR, Brunauer-Emmett-Teller test. The composite epoxy encapsulation film, incorporating graphene oxide and post-treated calcium oxide nanoparticles, reduced water permeability approximately 400 times compared to the neat epoxy encapsulation film. This substantial improvement makes it suitable for use in flexible disposable electronics. The enhanced water vapor blocking efficiency is attributed to the combined effect of pathway block by graphene oxide and moisture absorption by calcium oxide.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用溶液工艺生产含 CaO 吸附剂的单层封装薄膜
研究了一种使用有机-无机混合前驱体溶液加工制备单层封装薄膜的方法。为确保成本效益,该薄膜使用了商品环氧树脂和氧化石墨烯。采用了快速固化和退火技术,包括微波和强脉冲光照射。此外,还加入了纳米氧化钙颗粒作为特殊的吸湿剂,以提高薄膜的阻隔性能。通过对这些纳米粒子进行后处理,单层封装薄膜的阻隔性能大大提高。利用透射电子显微镜与能量色散 X 射线光谱、傅立叶变换红外光谱、布鲁纳尔-艾美特-泰勒试验对后处理后的氧化钙纳米粒子进行了表征。与纯环氧树脂封装膜相比,含有氧化石墨烯和后处理氧化钙纳米颗粒的复合环氧树脂封装膜的透水性降低了约 400 倍。这一重大改进使其适用于柔性一次性电子产品。水蒸气阻隔效率的提高归功于氧化石墨烯阻隔通路和氧化钙吸湿的共同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
High triplet hexahydroacridine derivatives as a host prevent exciton diffusion to adjacent layers in solution processed OLEDs Naphthalene-Arylamine starburst architectures: Novel hole transport materials for enhanced OLED performance Cyclic(amino)(barrelene)carbene metal amide complexes: Synthesis and thermally activated delayed fluorescence Interface modification based on norfloxacin for enhancing the performance of the inverted perovskite solar cells Recent progress in high-performance thermally activated delayed fluorescence exciplexes based on multiple reverse intersystem crossing channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1