Intrinsic single-layer multiferroics in transition-metal-decorated chromium trihalides

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-08-14 DOI:10.1038/s41524-024-01369-5
Meng Liu, Shuyi He, Hongyan Ji, Jingda Guo, Zhaotan Jiang, Jia-Tao Sun, Hong-Jun Gao
{"title":"Intrinsic single-layer multiferroics in transition-metal-decorated chromium trihalides","authors":"Meng Liu, Shuyi He, Hongyan Ji, Jingda Guo, Zhaotan Jiang, Jia-Tao Sun, Hong-Jun Gao","doi":"10.1038/s41524-024-01369-5","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional materials possessing intrinsic multiferroic properties have long been sought to harness the magnetoelectric coupling in nanoelectronic devices. Here, we report the achievement of robust type I multiferroic order in single-layer chromium trihalides by decorating transition metal atoms. The out-of-plane ferroelectric polarization exhibits strong atomic selectivity, where 12 of 84 single-layer transition metal-based multiferroic materials possess out-of-plane ferroelectric or antiferroelectric polarization. Group theory reveals that this phenomenon is strongly dependent on <i>p</i>–<i>d</i> coupling and crystal field splitting. Cu decoration enhances the intrinsic ferromagnetism of trihalides and increases the ferromagnetic transition temperature. Moreover, both ferroelectric and antiferroelectric phases are obtained, providing opportunities for electrical control of magnetism and energy storage and conversion applications. Furthermore, the transport properties of Cu(CrBr<sub>3</sub>)<sub>2</sub> devices are calculated based on the non-equilibrium Green’s function, and the results demonstrate outstanding spin-filtering properties and a low-bias negative differential resistance (NDR) effect for low power consumption.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"18 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01369-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional materials possessing intrinsic multiferroic properties have long been sought to harness the magnetoelectric coupling in nanoelectronic devices. Here, we report the achievement of robust type I multiferroic order in single-layer chromium trihalides by decorating transition metal atoms. The out-of-plane ferroelectric polarization exhibits strong atomic selectivity, where 12 of 84 single-layer transition metal-based multiferroic materials possess out-of-plane ferroelectric or antiferroelectric polarization. Group theory reveals that this phenomenon is strongly dependent on pd coupling and crystal field splitting. Cu decoration enhances the intrinsic ferromagnetism of trihalides and increases the ferromagnetic transition temperature. Moreover, both ferroelectric and antiferroelectric phases are obtained, providing opportunities for electrical control of magnetism and energy storage and conversion applications. Furthermore, the transport properties of Cu(CrBr3)2 devices are calculated based on the non-equilibrium Green’s function, and the results demonstrate outstanding spin-filtering properties and a low-bias negative differential resistance (NDR) effect for low power consumption.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过渡金属装饰三卤化铬中的固有单层多铁氧体
长期以来,人们一直在寻找具有内在多铁性的二维材料,以便在纳米电子器件中利用磁电耦合。在此,我们报告了通过装饰过渡金属原子,在单层三卤化铬中实现了稳健的 I 型多铁电阶。面外铁电极化表现出很强的原子选择性,84 种单层过渡金属多铁性材料中有 12 种具有面外铁电或反铁电极化。群论显示,这种现象与 p-d 耦合和晶体场分裂密切相关。铜装饰增强了三卤化物的固有铁磁性,并提高了铁磁转变温度。此外,还获得了铁电相和反铁电相,为磁性的电气控制以及能量存储和转换应用提供了机会。此外,还根据非平衡格林函数计算了 Cu(CrBr3)2 器件的传输特性,结果表明该器件具有出色的自旋过滤特性和低偏置负微分电阻 (NDR) 效应,可实现低功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1