Younguk Song, Jonginn Yun, Jehyun Kim, Wonjin Jang, Hyeongyu Jang, Jaemin Park, Min-Kyun Cho, Hanseo Sohn, Noritaka Usami, Satoru Miyamoto, Kohei M. Itoh, Dohun Kim
{"title":"Coherence of a field gradient driven singlet-triplet qubit coupled to multielectron spin states in 28Si/SiGe","authors":"Younguk Song, Jonginn Yun, Jehyun Kim, Wonjin Jang, Hyeongyu Jang, Jaemin Park, Min-Kyun Cho, Hanseo Sohn, Noritaka Usami, Satoru Miyamoto, Kohei M. Itoh, Dohun Kim","doi":"10.1038/s41534-024-00869-y","DOIUrl":null,"url":null,"abstract":"<p>Engineered spin-electric coupling enables spin qubits in semiconductor nanostructures to be manipulated efficiently and addressed individually. While synthetic spin-orbit coupling using a micromagnet is widely investigated for driving and entangling qubits based on single spins in silicon, the baseband control of encoded spin qubits with a micromagnet in isotopically purified silicon has been less well investigated. Here, we demonstrate fast singlet-triplet qubit oscillation (~100 MHz) in a gate-defined double quantum dot in <sup>28</sup>Si/SiGe with an on-chip micromagnet with which we show the oscillation quality factor of an encoded spin qubit exceeding 580. The coherence time <i>T</i><sub>2</sub>* is analyzed as a function of potential detuning and an external magnetic field. In weak magnetic fields, the coherence is limited by frequency-independent noise whose time scale is faster than the typical data acquisition time of ~100 ms, which limits the <i>T</i><sub>2</sub>* below 1 μs in the ergodic limit. We present evidence of sizable and coherent coupling of the qubit with the spin states of a nearby quantum dot, demonstrating that appropriate spin-electric coupling may enable a charge-based two-qubit gate in a (1,1) charge configuration.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00869-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered spin-electric coupling enables spin qubits in semiconductor nanostructures to be manipulated efficiently and addressed individually. While synthetic spin-orbit coupling using a micromagnet is widely investigated for driving and entangling qubits based on single spins in silicon, the baseband control of encoded spin qubits with a micromagnet in isotopically purified silicon has been less well investigated. Here, we demonstrate fast singlet-triplet qubit oscillation (~100 MHz) in a gate-defined double quantum dot in 28Si/SiGe with an on-chip micromagnet with which we show the oscillation quality factor of an encoded spin qubit exceeding 580. The coherence time T2* is analyzed as a function of potential detuning and an external magnetic field. In weak magnetic fields, the coherence is limited by frequency-independent noise whose time scale is faster than the typical data acquisition time of ~100 ms, which limits the T2* below 1 μs in the ergodic limit. We present evidence of sizable and coherent coupling of the qubit with the spin states of a nearby quantum dot, demonstrating that appropriate spin-electric coupling may enable a charge-based two-qubit gate in a (1,1) charge configuration.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.