Malyn A Selinidis, Andrew C Corliss, James Chappell, Jonathan J Silberg
{"title":"Ribozyme-Mediated Gene-Fragment Complementation for Nondestructive Reporting of DNA Transfer within Soil.","authors":"Malyn A Selinidis, Andrew C Corliss, James Chappell, Jonathan J Silberg","doi":"10.1021/acssynbio.4c00264","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes that produce volatile metabolites can be coded into genetic circuits to report nondisruptively on microbial behaviors in hard-to-image soils. However, these enzyme reporters remain challenging to apply in gene transfer studies due to leaky off states that can lead to false positives. To overcome this problem, we designed a reporter that uses ribozyme-mediated gene-fragment complementation of a methyl halide transferase (MHT) to regulate the synthesis of methyl halide gases. We split the <i>mht</i> gene into two nonfunctional fragments and attached these to a pair of splicing ribozyme fragments. While the individual <i>mht</i>-ribozyme fragments did not produce methyl halides when transcribed alone in <i>Escherichia coli</i>, coexpression resulted in a spliced transcript that translated the MHT reporter. When cells containing one <i>mht</i>-ribozyme fragment transcribed from a mobile plasmid were mixed with cells that transcribed the second <i>mht</i>-ribozyme fragment, methyl halides were only detected following rare conjugation events. When conjugation was performed in soil, it led to a 16-fold increase in methyl halides in the soil headspace. These findings show how ribozyme-mediated gene-fragment complementation can achieve tight control of protein reporter production, a level of control that will be critical for monitoring the effects of soil conditions on gene transfer and the fidelity of biocontainment measures developed for environmental applications.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00264","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymes that produce volatile metabolites can be coded into genetic circuits to report nondisruptively on microbial behaviors in hard-to-image soils. However, these enzyme reporters remain challenging to apply in gene transfer studies due to leaky off states that can lead to false positives. To overcome this problem, we designed a reporter that uses ribozyme-mediated gene-fragment complementation of a methyl halide transferase (MHT) to regulate the synthesis of methyl halide gases. We split the mht gene into two nonfunctional fragments and attached these to a pair of splicing ribozyme fragments. While the individual mht-ribozyme fragments did not produce methyl halides when transcribed alone in Escherichia coli, coexpression resulted in a spliced transcript that translated the MHT reporter. When cells containing one mht-ribozyme fragment transcribed from a mobile plasmid were mixed with cells that transcribed the second mht-ribozyme fragment, methyl halides were only detected following rare conjugation events. When conjugation was performed in soil, it led to a 16-fold increase in methyl halides in the soil headspace. These findings show how ribozyme-mediated gene-fragment complementation can achieve tight control of protein reporter production, a level of control that will be critical for monitoring the effects of soil conditions on gene transfer and the fidelity of biocontainment measures developed for environmental applications.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.