Genome-wide Studies Reveal Genetic Risk Factors for Hepatic Fat Content.

Yanni Li, Eline H van den Berg, Alexander Kurilshikov, Dasha V Zhernakova, Ranko Gacesa, Shixian Hu, Esteban A Lopera-Maya, Alexandra Zhernakova, Vincent E de Meijer, Serena Sanna, Robin P F Dullaart, Hans Blokzijl, Eleonora A M Festen, Jingyuan Fu, Rinse K Weersma
{"title":"Genome-wide Studies Reveal Genetic Risk Factors for Hepatic Fat Content.","authors":"Yanni Li, Eline H van den Berg, Alexander Kurilshikov, Dasha V Zhernakova, Ranko Gacesa, Shixian Hu, Esteban A Lopera-Maya, Alexandra Zhernakova, Vincent E de Meijer, Serena Sanna, Robin P F Dullaart, Hans Blokzijl, Eleonora A M Festen, Jingyuan Fu, Rinse K Weersma","doi":"10.1093/gpbjnl/qzae031","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic susceptibility to metabolic associated fatty liver disease (MAFLD) is complex and poorly characterized. Accurate characterization of the genetic background of hepatic fat content would provide insights into disease etiology and causality of risk factors. We performed genome-wide association study (GWAS) on two noninvasive definitions of hepatic fat content: magnetic resonance imaging proton density fat fraction (MRI-PDFF) in 16,050 participants and fatty liver index (FLI) in 388,701 participants from the United Kingdom (UK) Biobank (UKBB). Heritability, genetic overlap, and similarity between hepatic fat content phenotypes were analyzed, and replicated in 10,398 participants from the University Medical Center Groningen (UMCG) Genetics Lifelines Initiative (UGLI). Meta-analysis of GWASs of MRI-PDFF in UKBB revealed five statistically significant loci, including two novel genomic loci harboring CREB3L1 (rs72910057-T, P = 5.40E-09) and GCM1 (rs1491489378-T, P = 3.16E-09), respectively, as well as three previously reported loci: PNPLA3, TM6SF2, and APOE. GWAS of FLI in UKBB identified 196 genome-wide significant loci, of which 49 were replicated in UGLI, with top signals in ZPR1 (P = 3.35E-13) and FTO (P = 2.11E-09). Statistically significant genetic correlation (rg) between MRI-PDFF (UKBB) and FLI (UGLI) GWAS results was found (rg = 0.5276, P = 1.45E-03). Novel MRI-PDFF genetic signals (CREB3L1 and GCM1) were replicated in the FLI GWAS. We identified two novel genes for MRI-PDFF and 49 replicable loci for FLI. Despite a difference in hepatic fat content assessment between MRI-PDFF and FLI, a substantial similar genetic architecture was found. FLI is identified as an easy and reliable approach to study hepatic fat content at the population level.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic susceptibility to metabolic associated fatty liver disease (MAFLD) is complex and poorly characterized. Accurate characterization of the genetic background of hepatic fat content would provide insights into disease etiology and causality of risk factors. We performed genome-wide association study (GWAS) on two noninvasive definitions of hepatic fat content: magnetic resonance imaging proton density fat fraction (MRI-PDFF) in 16,050 participants and fatty liver index (FLI) in 388,701 participants from the United Kingdom (UK) Biobank (UKBB). Heritability, genetic overlap, and similarity between hepatic fat content phenotypes were analyzed, and replicated in 10,398 participants from the University Medical Center Groningen (UMCG) Genetics Lifelines Initiative (UGLI). Meta-analysis of GWASs of MRI-PDFF in UKBB revealed five statistically significant loci, including two novel genomic loci harboring CREB3L1 (rs72910057-T, P = 5.40E-09) and GCM1 (rs1491489378-T, P = 3.16E-09), respectively, as well as three previously reported loci: PNPLA3, TM6SF2, and APOE. GWAS of FLI in UKBB identified 196 genome-wide significant loci, of which 49 were replicated in UGLI, with top signals in ZPR1 (P = 3.35E-13) and FTO (P = 2.11E-09). Statistically significant genetic correlation (rg) between MRI-PDFF (UKBB) and FLI (UGLI) GWAS results was found (rg = 0.5276, P = 1.45E-03). Novel MRI-PDFF genetic signals (CREB3L1 and GCM1) were replicated in the FLI GWAS. We identified two novel genes for MRI-PDFF and 49 replicable loci for FLI. Despite a difference in hepatic fat content assessment between MRI-PDFF and FLI, a substantial similar genetic architecture was found. FLI is identified as an easy and reliable approach to study hepatic fat content at the population level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全基因组研究揭示肝脏脂肪含量的遗传风险因素
代谢相关性脂肪肝(MAFLD)的遗传易感性复杂且特征不清。准确描述肝脏脂肪含量的遗传背景将有助于深入了解疾病的病因和风险因素的因果关系。我们对肝脏脂肪含量的两种无创定义进行了全基因组关联研究(GWAS):磁共振成像质子密度脂肪分数(MRI-PDFF)(16,050 名参与者)和脂肪肝指数(FLI)(388,701 名来自英国生物库(UKBB)的参与者)。对肝脏脂肪含量表型之间的遗传性、遗传重叠和相似性进行了分析,并在格罗宁根大学医学中心(UMCG)遗传学生命线倡议(UGLI)的 10,398 名参与者中进行了复制。对UKBB中MRI-PDFF的GWAS进行元分析,发现了5个具有统计学意义的基因位点,包括两个新的基因组位点,分别是CREB3L1(rs72910057-T,P=5.40E-09)和GCM1(rs1491489378-T,P=3.16E-09),以及3个以前报道过的基因位点:PNPLA3、TM6SF2 和 APOE。对UKBB的FLI进行的GWAS发现了196个全基因组显著位点,其中49个在UGLI中得到了复制,ZPR1(P = 3.35E-13)和FTO(P = 2.11E-09)的信号最强。MRI-PDFF(UKBB)和 FLI(UGLI)的 GWAS 结果之间存在统计学意义上的遗传相关性(rg)(rg = 0.5276,P = 1.45E-03)。新的 MRI-PDFF 遗传信号(CREB3L1 和 GCM1)在 FLI GWAS 中得到了复制。我们为 MRI-PDFF 确定了两个新基因,为 FLI 确定了 49 个可复制的基因位点。尽管 MRI-PDFF 和 FLI 在肝脏脂肪含量评估方面存在差异,但却发现了非常相似的遗传结构。FLI 被认为是在人群水平上研究肝脏脂肪含量的一种简单可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iMFP-LG: Identification of Novel Multi-Functional Peptides by Using Protein Language Models and Graph-Based Deep Learning. ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics. VISTA: A Tool for Fast Taxonomic Assignment of Viral Genome Sequences. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. SoyOD: An Integrated Soybean Multi-omics Database for Mining Genes and Biological Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1