首页 > 最新文献

Genomics, proteomics & bioinformatics最新文献

英文 中文
Laws of Genome Nucleotide Composition. 基因组核苷酸组成规律
Pub Date : 2024-08-30 DOI: 10.1093/gpbjnl/qzae061
Zhang Zhang
{"title":"Laws of Genome Nucleotide Composition.","authors":"Zhang Zhang","doi":"10.1093/gpbjnl/qzae061","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae061","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell RNA-seq Reveals that Methamphetamine Inhibits Liver Immunity with Involvement of Dopamine Receptor D1. 单细胞 RNA 截图揭示甲基苯丙胺抑制肝脏免疫与多巴胺受体 D1 的关系
Pub Date : 2024-08-28 DOI: 10.1093/gpbjnl/qzae060
Jin-Ting Zhou, Yungang Xu, Xiao-Huan Liu, Cheng Cheng, Jing-Na Fan, Xiaoming Li, Jun Yu, Shengbin Li

Methamphetamine (METH) is a highly addictive psychostimulant that causes physical and psychological damage and immune system disorder, especially in the liver that contains a significant number of immune cells. Dopamine, a key neurotransmitter in METH addiction and immune regulation, plays a crucial role in this process. Here, we developed a chronic METH administration model and conducted single-cell RNA sequencing (scRNA-seq) to investigate the effect of METH on liver immune cells and involvement of dopamine receptor D1 (DRD1). Our findings reveal that chronic exposure to METH induces immune cell identity shifts from Ifitm3+Macrophage (Mac) and Ccl5+Mac to Cd14+Mac, and from Fyn+CD4+T effector (Teff), CD8+T, and natural killer T cells (NKT) to Fos+CD4+T and Rora+ group 2 innate lymphoid cells (ILC2), along with suppression of multiple functional immune pathways. DRD1 is implicated in regulating certain pathways and identity shifts among the hepatic immune cells. Our results provide valuable insights into development of targeted therapies to mitigate METH-induced immune impairment.

甲基苯丙胺(METH)是一种高度成瘾的精神兴奋剂,会造成生理和心理损害以及免疫系统紊乱,尤其是在含有大量免疫细胞的肝脏中。多巴胺是 METH 上瘾和免疫调节的关键神经递质,在这一过程中起着至关重要的作用。在此,我们建立了一个慢性 METH 给药模型,并进行了单细胞 RNA 测序(scRNA-seq),以研究 METH 对肝脏免疫细胞的影响以及多巴胺受体 D1(DRD1)的参与。我们的研究结果表明,长期暴露于 METH 会诱导免疫细胞特性从 Ifitm3+ 巨噬细胞(Mac)和 Ccl5+Mac 向 Cd14+Mac 转移,以及从 Fyn+CD4+T效应细胞(Teff)、CD8+T 和自然杀伤 T 细胞(NKT)向 Fos+CD4+T 和 Rora+ 第 2 组先天淋巴细胞(ILC2)转移,并抑制多种功能性免疫通路。DRD1 与调节肝脏免疫细胞的某些通路和特性转变有关。我们的研究结果为开发靶向疗法以减轻 METH 引起的免疫损伤提供了宝贵的见解。
{"title":"Single-cell RNA-seq Reveals that Methamphetamine Inhibits Liver Immunity with Involvement of Dopamine Receptor D1.","authors":"Jin-Ting Zhou, Yungang Xu, Xiao-Huan Liu, Cheng Cheng, Jing-Na Fan, Xiaoming Li, Jun Yu, Shengbin Li","doi":"10.1093/gpbjnl/qzae060","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae060","url":null,"abstract":"<p><p>Methamphetamine (METH) is a highly addictive psychostimulant that causes physical and psychological damage and immune system disorder, especially in the liver that contains a significant number of immune cells. Dopamine, a key neurotransmitter in METH addiction and immune regulation, plays a crucial role in this process. Here, we developed a chronic METH administration model and conducted single-cell RNA sequencing (scRNA-seq) to investigate the effect of METH on liver immune cells and involvement of dopamine receptor D1 (DRD1). Our findings reveal that chronic exposure to METH induces immune cell identity shifts from Ifitm3+Macrophage (Mac) and Ccl5+Mac to Cd14+Mac, and from Fyn+CD4+T effector (Teff), CD8+T, and natural killer T cells (NKT) to Fos+CD4+T and Rora+ group 2 innate lymphoid cells (ILC2), along with suppression of multiple functional immune pathways. DRD1 is implicated in regulating certain pathways and identity shifts among the hepatic immune cells. Our results provide valuable insights into development of targeted therapies to mitigate METH-induced immune impairment.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142086421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eRNA-IDO: A One-stop Platform for Identification, Interactome Discovery, and Functional Annotation of Enhancer RNAs. eRNA-IDO: Enhancer RNAs 鉴定、交互组发现和功能注释的一站式平台。
Pub Date : 2024-08-23 DOI: 10.1093/gpbjnl/qzae059
Yuwei Zhang, Lihai Gong, Ruofan Ding, Wenyan Chen, Hao Rong, Yanguo Li, Fawziya Shameem, Korakkandan Arshad Ali, Lei Li, Qi Liao

Growing evidence supports the transcription of enhancer RNAs (eRNAs) and their important roles in gene regulation. However, their interactions with other biomolecules and their corresponding functionality remain poorly understood. In an attempt to facilitate mechanistic research, this study presents eRNA-IDO, the first integrative computational platform for the identification, interactome discovery, and functional annotation of human eRNAs. eRNA-IDO comprises two modules: eRNA-ID and eRNA-Anno. Functionally, eRNA-ID can identify eRNAs from de novo assembled transcriptomes. eRNA-ID includes 8 kinds of enhancer makers, enabling users to customize enhancer regions flexibly and conveniently. In addition, eRNA-Anno provides cell-specific/tissue-specific functional annotation for both new and known eRNAs by analyzing the eRNA interactome from prebuilt or user-defined networks between eRNA and coding gene. The prebuilt networks include the Genotype-Tissue Expression (GTEx)-based co-expression networks in normal tissues, The Cancer Genome Atlas (TCGA)-based co-expression networks in cancer tissues, and omics-based eRNA-centric regulatory networks. eRNA-IDO can facilitate research on the biogenesis and functions of eRNAs. The eRNA-IDO server is freely available at http://bioinfo.szbl.ac.cn/eRNA_IDO/.

越来越多的证据支持增强子 RNA(eRNA)的转录及其在基因调控中的重要作用。然而,人们对它们与其他生物大分子的相互作用及其相应的功能仍然知之甚少。为了促进机理研究,本研究提出了 eRNA-ID,这是第一个用于人类 eRNAs 鉴定、相互作用组发现和功能注释的综合计算平台。在功能上,eRNA-ID 可以从全新组装的转录组中识别 eRNA;eRNA-ID 包括 8 种增强子制作器,用户可以灵活方便地定制增强子区域。此外,eRNA-Anno 还通过分析 eRNA 与编码基因之间的预构建或用户自定义网络中的 eRNA 相互作用组,为新的和已知的 eRNA 提供细胞特异性/组织特异性功能注释。预建网络包括基于基因型-组织表达(GTEx)的正常组织共表达网络、基于癌症基因组图谱(TCGA)的癌症组织共表达网络,以及基于omics的以eRNA为中心的调控网络。eRNA-IDO 服务器可在 http://bioinfo.szbl.ac.cn/eRNA_IDO/ 免费获取。
{"title":"eRNA-IDO: A One-stop Platform for Identification, Interactome Discovery, and Functional Annotation of Enhancer RNAs.","authors":"Yuwei Zhang, Lihai Gong, Ruofan Ding, Wenyan Chen, Hao Rong, Yanguo Li, Fawziya Shameem, Korakkandan Arshad Ali, Lei Li, Qi Liao","doi":"10.1093/gpbjnl/qzae059","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae059","url":null,"abstract":"<p><p>Growing evidence supports the transcription of enhancer RNAs (eRNAs) and their important roles in gene regulation. However, their interactions with other biomolecules and their corresponding functionality remain poorly understood. In an attempt to facilitate mechanistic research, this study presents eRNA-IDO, the first integrative computational platform for the identification, interactome discovery, and functional annotation of human eRNAs. eRNA-IDO comprises two modules: eRNA-ID and eRNA-Anno. Functionally, eRNA-ID can identify eRNAs from de novo assembled transcriptomes. eRNA-ID includes 8 kinds of enhancer makers, enabling users to customize enhancer regions flexibly and conveniently. In addition, eRNA-Anno provides cell-specific/tissue-specific functional annotation for both new and known eRNAs by analyzing the eRNA interactome from prebuilt or user-defined networks between eRNA and coding gene. The prebuilt networks include the Genotype-Tissue Expression (GTEx)-based co-expression networks in normal tissues, The Cancer Genome Atlas (TCGA)-based co-expression networks in cancer tissues, and omics-based eRNA-centric regulatory networks. eRNA-IDO can facilitate research on the biogenesis and functions of eRNAs. The eRNA-IDO server is freely available at http://bioinfo.szbl.ac.cn/eRNA_IDO/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer Stemness Online: A Resource for Investigating Cancer Stemness and Associations with Immune Response. 癌症干细胞在线:研究癌症干性及其与免疫反应关系的资源。
Pub Date : 2024-08-14 DOI: 10.1093/gpbjnl/qzae058
Weiwei Zhou, Minghai Su, Tiantongfei Jiang, Yunjin Xie, Jingyi Shi, Yingying Ma, Kang Xu, Gang Xu, Yongsheng Li, Juan Xu

Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem-cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-art predictive computational methods have facilitated the prediction of cancer stemness, currently there is no efficient resource that can meet various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at the bulk and single-cell levels. The resource integrates 8 robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five different aspects, including identifying the signature genes of cancer stemness, exploring the associations with cancer hallmarks, cellular states, the immune response, and communication with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding the downstream functional interpretation, including immune response as well as cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.

癌症进展涉及分化表型的逐渐丧失以及祖细胞和干细胞样特征的获得,这些特征是导致免疫疗法耐药性的潜在元凶。虽然最先进的预测计算方法促进了癌症干细胞的预测,但目前还没有高效的资源能满足各种使用要求。在这里,我们介绍癌症干细胞在线,这是一种在体细胞和单细胞水平上有效评估癌症干细胞潜能的综合资源。该资源整合了8种稳健的预测算法以及27个与癌症干细胞相关的特征基因组,用于预测干细胞得分。下游分析从五个不同方面进行,包括确定癌症干性的特征基因,探索与癌症特征、细胞状态、免疫反应和与免疫细胞交流的关联,研究对患者生存的贡献,以及对不同方法的癌症干性进行稳健性分析。此外,用户还可以访问 40 多种癌症类型的预计算癌症干细胞图谱。分析结果的表格和各种可视化效果均可供下载。总之,癌症干性在线是一个强大的资源,可用于癌症干性评分和扩展下游功能解释,包括免疫反应和癌症标志。癌症干性在线可在 http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline 免费访问。
{"title":"Cancer Stemness Online: A Resource for Investigating Cancer Stemness and Associations with Immune Response.","authors":"Weiwei Zhou, Minghai Su, Tiantongfei Jiang, Yunjin Xie, Jingyi Shi, Yingying Ma, Kang Xu, Gang Xu, Yongsheng Li, Juan Xu","doi":"10.1093/gpbjnl/qzae058","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae058","url":null,"abstract":"<p><p>Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem-cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-art predictive computational methods have facilitated the prediction of cancer stemness, currently there is no efficient resource that can meet various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at the bulk and single-cell levels. The resource integrates 8 robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five different aspects, including identifying the signature genes of cancer stemness, exploring the associations with cancer hallmarks, cellular states, the immune response, and communication with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding the downstream functional interpretation, including immune response as well as cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Strategies and Algorithms for Inferring Cellular Composition of Spatial Transcriptomics Data. 推断空间转录组学数据的细胞组成的计算策略和算法。
Pub Date : 2024-08-07 DOI: 10.1093/gpbjnl/qzae057
Xiuying Liu, Xianwen Ren

Spatial transcriptomics technology has been an essential and powerful method for delineating tissue architecture at the molecular level. However, due to the limitations of the current spatial techniques, the cellular information cannot be directly measured but instead spatial spots typically varying from a diameter of 0.2 to 100 µm are characterized. Therefore, it is vital to apply computational strategies for inferring the cellular composition within each spatial spot. The main objective of this review is to summarize the most recent progresses to estimate the exact cellular proportions for each spatial spot, and to prospect the future directions of this field.

空间转录组学技术是在分子水平上划分组织结构的重要而强大的方法。然而,由于目前空间技术的局限性,无法直接测量细胞信息,只能对通常直径在 0.2 到 100 微米之间的空间点进行表征。因此,应用计算策略推断每个空间点内的细胞组成至关重要。本综述的主要目的是总结估算每个空间点的确切细胞比例的最新进展,并展望这一领域的未来发展方向。
{"title":"Computational Strategies and Algorithms for Inferring Cellular Composition of Spatial Transcriptomics Data.","authors":"Xiuying Liu, Xianwen Ren","doi":"10.1093/gpbjnl/qzae057","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae057","url":null,"abstract":"<p><p>Spatial transcriptomics technology has been an essential and powerful method for delineating tissue architecture at the molecular level. However, due to the limitations of the current spatial techniques, the cellular information cannot be directly measured but instead spatial spots typically varying from a diameter of 0.2 to 100 µm are characterized. Therefore, it is vital to apply computational strategies for inferring the cellular composition within each spatial spot. The main objective of this review is to summarize the most recent progresses to estimate the exact cellular proportions for each spatial spot, and to prospect the future directions of this field.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Cancer Stem Cells in Laryngeal Squamous Cell Carcinoma by Single-cell RNA Sequencing. 通过单细胞 RNA 测序鉴定喉鳞状细胞癌中癌症干细胞的特征
Pub Date : 2024-08-06 DOI: 10.1093/gpbjnl/qzae056
Yanguo Li, Chen Lin, Yidian Chu, Zhengyu Wei, Qi Ding, Shanshan Gu, Hongxia Deng, Qi Liao, Zhisen Shen

Cancer stem cells (CSCs) constitute a pivotal element within the tumor microenvironment (TME), driving the initiation and progression of cancer. However, the identification of CSCs and their underlying molecular mechanisms in laryngeal squamous cell carcinoma (LSCC) remains a formidable challenge. We employed single-cell RNA sequencing of matched primary tumor tissues, paracancerous tissues, and local lymph nodes from three LSCC patients. Two distinct clusters of stem cells originating from epithelial populations were delineated and verified as CSCs and normal stem cells (NSCs), respectively. CSCs were abundant in the paracancerous tissues compared to the tumor tissues. CSCs showed high expression of stem cell marker genes such as PROM1, ALDH1A1, and SOX4, and increased the activity of tumor-related hypoxia, Wnt/β-catenin, and Notch signaling pathways. We then explored the intricate crosstalk between CSCs and the TME cells and identified targets within the TME that related with CSCs. We also found eight marker genes of CSCs that correlated significantly with the prognosis of LSCC patients. Furthermore, bioinformatics analyses showed that drugs such as erlotinib, OSI-027, and ibrutinib selectively targeted the CSC-specifically expressed genes. In conclusion, our results represent the first comprehensive characterization of CSCs properties in LSCC at the single-cell level.

癌症干细胞(CSCs)是肿瘤微环境(TME)中的一个关键因素,驱动着癌症的发生和发展。然而,如何识别喉鳞状细胞癌(LSCC)中的癌干细胞及其潜在的分子机制仍然是一项艰巨的挑战。我们采用单细胞RNA测序法对3名LSCC患者的匹配原发肿瘤组织、癌旁组织和局部淋巴结进行了检测。我们划分出了两个不同的干细胞群,它们源于上皮细胞群,并分别被验证为CSCs和正常干细胞(NSCs)。与肿瘤组织相比,癌旁组织中有大量的干细胞。CSCs表现出干细胞标记基因如PROM1、ALDH1A1和SOX4的高表达,并增加了肿瘤相关缺氧、Wnt/β-catenin和Notch信号通路的活性。然后,我们探讨了 CSCs 与 TME 细胞之间错综复杂的相互影响,并确定了 TME 中与 CSCs 相关的靶点。我们还发现了八个与LSCC患者预后显著相关的CSCs标记基因。此外,生物信息学分析表明,厄洛替尼、OSI-027 和伊布替尼等药物可选择性地靶向 CSC 特异性表达的基因。总之,我们的研究结果首次在单细胞水平上全面描述了LSCC中CSCs的特性。
{"title":"Characterization of Cancer Stem Cells in Laryngeal Squamous Cell Carcinoma by Single-cell RNA Sequencing.","authors":"Yanguo Li, Chen Lin, Yidian Chu, Zhengyu Wei, Qi Ding, Shanshan Gu, Hongxia Deng, Qi Liao, Zhisen Shen","doi":"10.1093/gpbjnl/qzae056","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae056","url":null,"abstract":"<p><p>Cancer stem cells (CSCs) constitute a pivotal element within the tumor microenvironment (TME), driving the initiation and progression of cancer. However, the identification of CSCs and their underlying molecular mechanisms in laryngeal squamous cell carcinoma (LSCC) remains a formidable challenge. We employed single-cell RNA sequencing of matched primary tumor tissues, paracancerous tissues, and local lymph nodes from three LSCC patients. Two distinct clusters of stem cells originating from epithelial populations were delineated and verified as CSCs and normal stem cells (NSCs), respectively. CSCs were abundant in the paracancerous tissues compared to the tumor tissues. CSCs showed high expression of stem cell marker genes such as PROM1, ALDH1A1, and SOX4, and increased the activity of tumor-related hypoxia, Wnt/β-catenin, and Notch signaling pathways. We then explored the intricate crosstalk between CSCs and the TME cells and identified targets within the TME that related with CSCs. We also found eight marker genes of CSCs that correlated significantly with the prognosis of LSCC patients. Furthermore, bioinformatics analyses showed that drugs such as erlotinib, OSI-027, and ibrutinib selectively targeted the CSC-specifically expressed genes. In conclusion, our results represent the first comprehensive characterization of CSCs properties in LSCC at the single-cell level.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative Omics Uncovers Low Tumorous Magnesium Content as A Driver Factor of Colorectal Cancer. 整合分子生物学发现肿瘤镁含量低是结直肠癌的一个驱动因素
Pub Date : 2024-07-25 DOI: 10.1093/gpbjnl/qzae053
Rou Zhang, Meng Hu, Yu Liu, Wanmeng Li, Zhiqiang Xu, Siyu He, Ying Lu, Yanqiu Gong, Xiuxuan Wang, Shan Hai, Shuangqing Li, Shiqian Qi, Yuan Li, Yang Shu, Dan Du, Huiyuan Zhang, Heng Xu, Zongguang Zhou, Peng Lei, Hai-Ning Chen, Lunzhi Dai

Magnesium (Mg) deficiency is associated with increased risk and malignancy in colorectal cancer (CRC), yet the underlying mechanisms remain elusive. Here, we used genomic, proteomic, and phosphoproteomic data to elucidate the impact of Mg deficiency on CRC. Genomic analysis identified 160 genes with higher mutation frequencies in Low-Mg tumors, including key driver genes such as KMT2C and ERBB3. Unexpectedly, initiation driver genes of CRC, such as TP53 and APC, displayed higher mutation frequencies in High-Mg tumors. Additionally, proteomic and phosphoproteomic data indicated that low Mg content in tumors may activate epithelial-mesenchymal transition (EMT) by modulating inflammation or remodeling the phosphoproteome of cancer cells. Notably, we observed a negative correlation between the phosphorylation of DBN1 at S142 (DBN1S142p) and Mg content. A mutation in S142 to D (DBN1S142D) mimicking DBN1S142p upregulated MMP2 and enhanced cell migration, while treatment with MgCl2 reduced DBN1S142p, thereby reversing this phenotype. Mechanistically, Mg2+ attenuated the DBN1-ACTN4 interaction by decreasing DBN1S142p, which in turn enhanced the binding of ACTN4 to F-actin and promoted F-actin polymerization, ultimately reducing MMP2 expression. These findings shed new light on the crucial role of Mg deficiency in CRC progression and suggest that Mg supplementation may be a promising preventive and therapeutic strategy for CRC.

镁(Mg)缺乏与结直肠癌(CRC)的风险和恶性程度增加有关,但其潜在的机制仍然难以捉摸。在这里,我们利用基因组学、蛋白质组学和磷酸蛋白质组学数据来阐明镁缺乏对 CRC 的影响。基因组分析确定了低镁肿瘤中突变频率较高的160个基因,包括KMT2C和ERBB3等关键驱动基因。意想不到的是,TP53 和 APC 等 CRC 启动驱动基因在高镁肿瘤中的突变频率更高。此外,蛋白质组和磷酸化蛋白质组数据表明,肿瘤中的低镁含量可能会通过调节炎症或重塑癌细胞的磷酸化蛋白质组来激活上皮-间质转化(EMT)。值得注意的是,我们观察到 DBN1 在 S142 处的磷酸化(DBN1S142p)与镁含量呈负相关。模拟 DBN1S142p 的 S142 突变为 D(DBN1S142D)会上调 MMP2 并增强细胞迁移,而用 MgCl2 处理会降低 DBN1S142p,从而逆转这种表型。从机理上讲,Mg2+ 通过减少 DBN1S142p 减弱了 DBN1-ACTN4 的相互作用,这反过来又增强了 ACTN4 与 F-肌动蛋白的结合并促进了 F-肌动蛋白的聚合,最终减少了 MMP2 的表达。这些发现揭示了镁缺乏在 CRC 进展中的关键作用,并表明补充镁可能是一种很有前景的 CRC 预防和治疗策略。
{"title":"Integrative Omics Uncovers Low Tumorous Magnesium Content as A Driver Factor of Colorectal Cancer.","authors":"Rou Zhang, Meng Hu, Yu Liu, Wanmeng Li, Zhiqiang Xu, Siyu He, Ying Lu, Yanqiu Gong, Xiuxuan Wang, Shan Hai, Shuangqing Li, Shiqian Qi, Yuan Li, Yang Shu, Dan Du, Huiyuan Zhang, Heng Xu, Zongguang Zhou, Peng Lei, Hai-Ning Chen, Lunzhi Dai","doi":"10.1093/gpbjnl/qzae053","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae053","url":null,"abstract":"<p><p>Magnesium (Mg) deficiency is associated with increased risk and malignancy in colorectal cancer (CRC), yet the underlying mechanisms remain elusive. Here, we used genomic, proteomic, and phosphoproteomic data to elucidate the impact of Mg deficiency on CRC. Genomic analysis identified 160 genes with higher mutation frequencies in Low-Mg tumors, including key driver genes such as KMT2C and ERBB3. Unexpectedly, initiation driver genes of CRC, such as TP53 and APC, displayed higher mutation frequencies in High-Mg tumors. Additionally, proteomic and phosphoproteomic data indicated that low Mg content in tumors may activate epithelial-mesenchymal transition (EMT) by modulating inflammation or remodeling the phosphoproteome of cancer cells. Notably, we observed a negative correlation between the phosphorylation of DBN1 at S142 (DBN1S142p) and Mg content. A mutation in S142 to D (DBN1S142D) mimicking DBN1S142p upregulated MMP2 and enhanced cell migration, while treatment with MgCl2 reduced DBN1S142p, thereby reversing this phenotype. Mechanistically, Mg2+ attenuated the DBN1-ACTN4 interaction by decreasing DBN1S142p, which in turn enhanced the binding of ACTN4 to F-actin and promoted F-actin polymerization, ultimately reducing MMP2 expression. These findings shed new light on the crucial role of Mg deficiency in CRC progression and suggest that Mg supplementation may be a promising preventive and therapeutic strategy for CRC.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variation and Interaction of Distinct Subgenomes Contribute to Growth Diversity in Intergeneric Hybrid Fish. 不同亚基因组的变异和相互作用促成了杂交鱼类的生长多样性。
Pub Date : 2024-07-23 DOI: 10.1093/gpbjnl/qzae055
Li Ren, Mengxue Luo, Jialin Cui, Xin Gao, Hong Zhang, Ping Wu, Zehong Wei, Yakui Tai, Mengdan Li, Kaikun Luo, Shaojun Liu

Intergeneric hybridization greatly reshapes regulatory interactions among allelic and non-allelic genes. However, their effects on growth diversity remain poorly understood in animals. In this study, we conducted whole-genome sequencing and RNA sequencing (RNA-seq) analyses in diverse hybrid varieties resulting from the intergeneric hybridization of goldfish (Carassius auratus red var.) and common carp (Cyprinus carpio). These hybrid individuals were characterized by distinct mitochondrial genomes and copy number variations. Through a weighted gene correlation network analysis, we identified 3693 genes as candidate growth-regulated genes. Among them, the expression of 3672 genes in subgenome R (originating from goldfish) displayed negative correlations with growth rate, whereas 20 genes in subgenome C (originating from common carp) exhibited positive correlations. Notably, we observed intriguing patterns in the expression of slc2a12 in subgenome C, showing opposite correlations with body weight that changed with water temperatures, suggesting differential interactions between feeding activity and weight gain in response to seasonal changes for hybrid animals. In 40.31% of alleles, we observed dominant trans-regulatory effects in the regulatory interaction between distinct alleles from subgenomes R and C. Integrating analyses of allelic-specific expression and DNA methylation data revealed that the influence of DNA methylation on both subgenomes shapes the relative contribution of allelic expression to the growth rate. These findings provide novel insights into the interaction of distinct subgenomes that underlie heterosis in growth traits and contribute to a better understanding of multiple allele traits in animals.

等位基因和非等位基因间的杂交极大地改变了等位基因和非等位基因间的调控相互作用。然而,它们对动物生长多样性的影响仍然知之甚少。在这项研究中,我们对金鱼(Carassius auratus red var.)和鲤鱼(Cyprinus carpio)属间杂交产生的不同杂交品种进行了全基因组测序和 RNA 测序(RNA-seq)分析。这些杂交个体具有不同的线粒体基因组和拷贝数变异。通过加权基因相关网络分析,我们发现了 3693 个候选生长调控基因。其中,R亚基因组(源自金鱼)中3672个基因的表达与生长速度呈负相关,而C亚基因组(源自鲤鱼)中20个基因的表达与生长速度呈正相关。值得注意的是,我们观察到 C 亚基因组中 slc2a12 的表达呈现出耐人寻味的模式,它与体重的相关性与水温的变化相反,这表明杂交动物的摄食活动与体重增加之间存在不同的相互作用,以应对季节变化。综合分析等位基因特异性表达和DNA甲基化数据发现,DNA甲基化对两个亚基因组的影响决定了等位基因表达对生长率的相对贡献。这些发现为了解不同亚基因组之间的相互作用提供了新的视角,而这种相互作用是生长性状异质性的基础,有助于更好地理解动物的多等位基因性状。
{"title":"Variation and Interaction of Distinct Subgenomes Contribute to Growth Diversity in Intergeneric Hybrid Fish.","authors":"Li Ren, Mengxue Luo, Jialin Cui, Xin Gao, Hong Zhang, Ping Wu, Zehong Wei, Yakui Tai, Mengdan Li, Kaikun Luo, Shaojun Liu","doi":"10.1093/gpbjnl/qzae055","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae055","url":null,"abstract":"<p><p>Intergeneric hybridization greatly reshapes regulatory interactions among allelic and non-allelic genes. However, their effects on growth diversity remain poorly understood in animals. In this study, we conducted whole-genome sequencing and RNA sequencing (RNA-seq) analyses in diverse hybrid varieties resulting from the intergeneric hybridization of goldfish (Carassius auratus red var.) and common carp (Cyprinus carpio). These hybrid individuals were characterized by distinct mitochondrial genomes and copy number variations. Through a weighted gene correlation network analysis, we identified 3693 genes as candidate growth-regulated genes. Among them, the expression of 3672 genes in subgenome R (originating from goldfish) displayed negative correlations with growth rate, whereas 20 genes in subgenome C (originating from common carp) exhibited positive correlations. Notably, we observed intriguing patterns in the expression of slc2a12 in subgenome C, showing opposite correlations with body weight that changed with water temperatures, suggesting differential interactions between feeding activity and weight gain in response to seasonal changes for hybrid animals. In 40.31% of alleles, we observed dominant trans-regulatory effects in the regulatory interaction between distinct alleles from subgenomes R and C. Integrating analyses of allelic-specific expression and DNA methylation data revealed that the influence of DNA methylation on both subgenomes shapes the relative contribution of allelic expression to the growth rate. These findings provide novel insights into the interaction of distinct subgenomes that underlie heterosis in growth traits and contribute to a better understanding of multiple allele traits in animals.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-cancer Analysis Reveals m6A Variation and Cell-specific Regulatory Network in Different Cancer Types. 泛癌症分析揭示不同癌症类型中的 m6A 变异和细胞特异性调控网络
Pub Date : 2024-07-05 DOI: 10.1093/gpbjnl/qzae052
Yao Lin, Jingyi Li, Shuaiyi Liang, Yaxin Chen, Yueqi Li, Yixian Cun, Lei Tian, Yuanli Zhou, Yitong Chen, Jiemei Chu, Hubin Chen, Qiang Luo, Ruili Zheng, Gang Wang, Hao Liang, Ping Cui, Sanqi An

As the most abundant messenger RNA (mRNA) modification in mRNA, N  6-methyladenosine (m6A) plays a crucial role in RNA fate, impacting cellular and physiological processes in various tumor types. However, our understanding of the function and role of the m6A methylome in tumor heterogeneity remains limited. Herein, we collected and analyzed m6A methylomes across nine human tissues from 97 m6A sequencing (m6A-seq) and RNA sequencing samples. Our findings demonstrate that m6A exhibits different heterogeneity in most tumor tissues compared to normal tissues, which contributes to the diverse clinical outcomes in different cancer types. We also found that the cancer type-specific m6A level regulated the expression of different cancer-related genes in distinct cancer types. Utilizing a novel and reliable method called "m6A-express", we predicted m6A-regulated genes and revealed that cancer type-specific m6A-regulated genes contributed to the prognosis, tumor origin, and infiltration level of immune cells in diverse patient populations. Furthermore, we identified cell-specific m6A regulators that regulate cancer-specific m6A and constructed a regulatory network. Experimental validation was performed, confirming that the cell-specific m6A regulator CAPRIN1 controls the m6A level of TP53. Overall, our work reveals the clinical relevance of m6A in various tumor tissues and explains how such heterogeneity is established. These results further suggest the potential of m6A for cancer precision medicine for patients with different cancer types.

作为mRNA中最丰富的信使RNA(mRNA)修饰,N-6-甲基腺苷(m6A)在RNA命运中起着至关重要的作用,影响着各种肿瘤类型的细胞和生理过程。然而,我们对 m6A 甲基组在肿瘤异质性中的功能和作用的了解仍然有限。在此,我们从97个m6A测序(m6A-seq)和RNA测序样本中收集并分析了9种人体组织的m6A甲基组。我们的研究结果表明,与正常组织相比,m6A 在大多数肿瘤组织中表现出不同的异质性,这也是导致不同癌症类型临床结果各异的原因之一。我们还发现,在不同的癌症类型中,癌症特异性 m6A 水平调控着不同癌症相关基因的表达。利用一种名为 "m6A-express "的新型可靠方法,我们预测了受 m6A 调控的基因,并揭示了癌症特异性 m6A 调控基因对不同患者群体的预后、肿瘤起源和免疫细胞浸润水平的影响。此外,我们还发现了调控癌症特异性 m6A 的细胞特异性 m6A 调控因子,并构建了一个调控网络。实验验证证实,细胞特异性 m6A 调节因子 CAPRIN1 控制着 TP53 的 m6A 水平。总之,我们的研究揭示了不同肿瘤组织中 m6A 的临床相关性,并解释了这种异质性是如何形成的。这些结果进一步表明,m6A 有潜力为不同癌症类型的患者提供癌症精准医疗。
{"title":"Pan-cancer Analysis Reveals m6A Variation and Cell-specific Regulatory Network in Different Cancer Types.","authors":"Yao Lin, Jingyi Li, Shuaiyi Liang, Yaxin Chen, Yueqi Li, Yixian Cun, Lei Tian, Yuanli Zhou, Yitong Chen, Jiemei Chu, Hubin Chen, Qiang Luo, Ruili Zheng, Gang Wang, Hao Liang, Ping Cui, Sanqi An","doi":"10.1093/gpbjnl/qzae052","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae052","url":null,"abstract":"<p><p>As the most abundant messenger RNA (mRNA) modification in mRNA, N  6-methyladenosine (m6A) plays a crucial role in RNA fate, impacting cellular and physiological processes in various tumor types. However, our understanding of the function and role of the m6A methylome in tumor heterogeneity remains limited. Herein, we collected and analyzed m6A methylomes across nine human tissues from 97 m6A sequencing (m6A-seq) and RNA sequencing samples. Our findings demonstrate that m6A exhibits different heterogeneity in most tumor tissues compared to normal tissues, which contributes to the diverse clinical outcomes in different cancer types. We also found that the cancer type-specific m6A level regulated the expression of different cancer-related genes in distinct cancer types. Utilizing a novel and reliable method called \"m6A-express\", we predicted m6A-regulated genes and revealed that cancer type-specific m6A-regulated genes contributed to the prognosis, tumor origin, and infiltration level of immune cells in diverse patient populations. Furthermore, we identified cell-specific m6A regulators that regulate cancer-specific m6A and constructed a regulatory network. Experimental validation was performed, confirming that the cell-specific m6A regulator CAPRIN1 controls the m6A level of TP53. Overall, our work reveals the clinical relevance of m6A in various tumor tissues and explains how such heterogeneity is established. These results further suggest the potential of m6A for cancer precision medicine for patients with different cancer types.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and Challenges in Advancing Plant Research with Single-cell Omics. 利用单细胞组学推进植物研究的机遇与挑战。
Pub Date : 2024-07-03 DOI: 10.1093/gpbjnl/qzae026
Mohammad Saidur Rhaman, Muhammad Ali, Wenxiu Ye, Bosheng Li

Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.

植物拥有多种细胞类型和复杂的调节机制,以适应不断变化的自然环境。人们采用了各种策略来研究细胞类型及其发育过程,其中包括单细胞测序方法,这种方法可提供高维目录来解决生物学问题。近年来,转录组学、表观基因组学、蛋白质组学、代谢组学和空间转录组学等单细胞测序技术越来越多地应用于植物科学,以揭示单细胞水平上错综复杂的生物学关系。然而,由于细胞结构所带来的挑战,单细胞技术在植物中的应用较为有限。本综述概述了单细胞全息技术的进展、其对植物系统的影响、未来的研究应用以及单细胞全息技术在植物系统中的挑战。
{"title":"Opportunities and Challenges in Advancing Plant Research with Single-cell Omics.","authors":"Mohammad Saidur Rhaman, Muhammad Ali, Wenxiu Ye, Bosheng Li","doi":"10.1093/gpbjnl/qzae026","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae026","url":null,"abstract":"<p><p>Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genomics, proteomics & bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1