{"title":"Fabricating epoxy vitrimer with excellent mechanical and dynamic exchange properties via network topology design","authors":"","doi":"10.1016/j.polymer.2024.127487","DOIUrl":null,"url":null,"abstract":"<div><p>Epoxy vitrimers are a novel type of environmentally friendly materials that possess exceptional properties, including self-healing, recyclability, and reprocessability. They offer a solution to the issue of traditional thermosetting epoxy resins, which are not recyclable. However, the incorporation of dynamic bonds typically results in a decrease in mechanical properties. Therefore, achieving a balance between the mechanical properties and dynamic exchange capability is crucial. In this work, a series of epoxy resin systems with various topological network characteristics were prepared by adjusting the proportions of bisphenol A epoxy resin (E51) and polyethylene glycol diglycidyl ether (EGDGE) epoxy resins in combination with a curing agent containing vinylogous urethane (VU) dynamic bonds. Through further study, we found that with the increase of E51 content, the cross-linking density of the network gradually increased, and the flexibility of the macromolecular chains decreased (favorable for enhancing the material's mechanical performance). Simultaneously, the free volume of the network gradually increased, and the tightness of the macromolecular chains decreased (favorable for improving the material's dynamic exchange ability). These two effects combined to make E51-40 exhibit the lowest activation energy for dynamic covalent bond exchange and the lowest topological transition temperature. Compared to E51-0, the tensile strength and glass transition temperature of E51-40 were improved by 22.23 % and 25.30 %, respectively. After remoulding experiment at 140 °C for 1h, the material exhibited a high tensile strength recovery of 91.34 %. Therefore, starting from the design of molecular structure, adjusting the network topology is an effective means to balance the mechanical and dynamic exchange properties of epoxy vitrimers. This provides experimental guidance and theoretical insights for designing high-performance epoxy vitrimer materials.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124008231","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Epoxy vitrimers are a novel type of environmentally friendly materials that possess exceptional properties, including self-healing, recyclability, and reprocessability. They offer a solution to the issue of traditional thermosetting epoxy resins, which are not recyclable. However, the incorporation of dynamic bonds typically results in a decrease in mechanical properties. Therefore, achieving a balance between the mechanical properties and dynamic exchange capability is crucial. In this work, a series of epoxy resin systems with various topological network characteristics were prepared by adjusting the proportions of bisphenol A epoxy resin (E51) and polyethylene glycol diglycidyl ether (EGDGE) epoxy resins in combination with a curing agent containing vinylogous urethane (VU) dynamic bonds. Through further study, we found that with the increase of E51 content, the cross-linking density of the network gradually increased, and the flexibility of the macromolecular chains decreased (favorable for enhancing the material's mechanical performance). Simultaneously, the free volume of the network gradually increased, and the tightness of the macromolecular chains decreased (favorable for improving the material's dynamic exchange ability). These two effects combined to make E51-40 exhibit the lowest activation energy for dynamic covalent bond exchange and the lowest topological transition temperature. Compared to E51-0, the tensile strength and glass transition temperature of E51-40 were improved by 22.23 % and 25.30 %, respectively. After remoulding experiment at 140 °C for 1h, the material exhibited a high tensile strength recovery of 91.34 %. Therefore, starting from the design of molecular structure, adjusting the network topology is an effective means to balance the mechanical and dynamic exchange properties of epoxy vitrimers. This provides experimental guidance and theoretical insights for designing high-performance epoxy vitrimer materials.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.