Development of a microwave sensor for the non-invasive detection of plant responses to water stress: A practical application on maize (Zea mays L.)

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2024-08-13 DOI:10.1016/j.biosystemseng.2024.08.007
Valeria Lazzoni , Danilo Brizi , Nicolina Staglianò , Cristiana Giordano , Elisa Pecoraro , Monica Anichini , Francesca Ugolini , Marco Bindi , Giovanni Argenti , Agostino Monorchio , Riccardo Rossi
{"title":"Development of a microwave sensor for the non-invasive detection of plant responses to water stress: A practical application on maize (Zea mays L.)","authors":"Valeria Lazzoni ,&nbsp;Danilo Brizi ,&nbsp;Nicolina Staglianò ,&nbsp;Cristiana Giordano ,&nbsp;Elisa Pecoraro ,&nbsp;Monica Anichini ,&nbsp;Francesca Ugolini ,&nbsp;Marco Bindi ,&nbsp;Giovanni Argenti ,&nbsp;Agostino Monorchio ,&nbsp;Riccardo Rossi","doi":"10.1016/j.biosystemseng.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel microwave sensing system, consisting of a microstrip self-resonant spiral coil inductively coupled to an external concentric planar probe loop, is presented and applied to the non-destructive detection of morpho-physiological plant responses to water stress. The optimised set-up of the proposed sensor ensures a highly sensitive spiral coil, which is a fundamental requirement to derive accurate information on plants' behavioural alterations related to water stress conditions. The proposed microwave sensor was tested it on two potted maize cultivars (<em>Zea mays</em> L.), namely “<em>Cinquantino Bianchi</em>” (<em>CB</em>) and “<em>Scagliolo Frassine</em>” (<em>SF</em>). For each cultivar, half of the samples were maintained at 100% (T100) field capacity while the other half was at 25% (T25) from 46 to 74 Days After Sowing (DAS). The frequency (<span><math><mrow><msub><mi>f</mi><mi>r</mi></msub></mrow></math></span>) shift and the amplitude peaks variation of the real component of the external planar probe input impedance (ℜ(<span><math><mrow><msub><mi>Z</mi><mrow><mi>i</mi><mi>n</mi><mi>p</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></math></span>)) were obtained daily by positioning the sensor on the stem. These measured data were related to morpho-physiological parameters destructively acquired at four different growth stages. The resulting linear correlation between the stem's freshwater content (<span><math><mrow><msub><mrow><mi>F</mi><mi>W</mi><mi>C</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>e</mi><mi>m</mi></mrow></msub></mrow></math></span>) with both <span><math><mrow><msub><mi>f</mi><mi>r</mi></msub></mrow></math></span> (r &gt; −0.64) and the amplitude peaks (ℜ (<span><math><mrow><msub><mi>Z</mi><mrow><mi>i</mi><mi>n</mi><mi>p</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></math></span>)) (r &gt; -0.70) provided evidence of the sensor's ability to identify stem dielectric properties' variations between the two water treatments. Concurrently, the sensor response demonstrated the capability to identify changes in the morphology and histology of the stem. Based on preliminary findings, the proposed sensor shows potential for employment in the real-time monitoring of plant water status, contributing to more economically and environmentally sustainable crop management practices. While the current correlations between plant water content and sensor measurements require further refinement to meet the rigorous industrial standards, nevertheless a large-scale adoption can be envisioned by leveraging IoT methodologies.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"246 ","pages":"Pages 191-203"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1537511024001855/pdfft?md5=2a215713de17b67dbdbe230e1ad3bab5&pid=1-s2.0-S1537511024001855-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001855","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel microwave sensing system, consisting of a microstrip self-resonant spiral coil inductively coupled to an external concentric planar probe loop, is presented and applied to the non-destructive detection of morpho-physiological plant responses to water stress. The optimised set-up of the proposed sensor ensures a highly sensitive spiral coil, which is a fundamental requirement to derive accurate information on plants' behavioural alterations related to water stress conditions. The proposed microwave sensor was tested it on two potted maize cultivars (Zea mays L.), namely “Cinquantino Bianchi” (CB) and “Scagliolo Frassine” (SF). For each cultivar, half of the samples were maintained at 100% (T100) field capacity while the other half was at 25% (T25) from 46 to 74 Days After Sowing (DAS). The frequency (fr) shift and the amplitude peaks variation of the real component of the external planar probe input impedance (ℜ(Zinput)) were obtained daily by positioning the sensor on the stem. These measured data were related to morpho-physiological parameters destructively acquired at four different growth stages. The resulting linear correlation between the stem's freshwater content (FWCstem) with both fr (r > −0.64) and the amplitude peaks (ℜ (Zinput)) (r > -0.70) provided evidence of the sensor's ability to identify stem dielectric properties' variations between the two water treatments. Concurrently, the sensor response demonstrated the capability to identify changes in the morphology and histology of the stem. Based on preliminary findings, the proposed sensor shows potential for employment in the real-time monitoring of plant water status, contributing to more economically and environmentally sustainable crop management practices. While the current correlations between plant water content and sensor measurements require further refinement to meet the rigorous industrial standards, nevertheless a large-scale adoption can be envisioned by leveraging IoT methodologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发用于非侵入式检测植物对水分胁迫反应的微波传感器:在玉米上的实际应用
本研究介绍了一种新型微波传感系统,该系统由一个微带自谐振螺旋线圈与外部同心平面探头环路电感耦合组成,可用于非破坏性检测植物对水分胁迫的形态生理反应。拟议传感器的优化设置确保了螺旋线圈的高灵敏度,而这正是获得与水胁迫条件相关的植物行为变化的准确信息的基本要求。在两个盆栽玉米品种(Zea mays L.)(即 "Cinquantino Bianchi"(CB)和 "Scagliolo Frassine"(SF))上测试了拟议的微波传感器。从播种后 46 天到 74 天(DAS),每个栽培品种的一半样品保持 100%(T100)的田间能力,另一半样品保持 25%(T25)的田间能力。通过将传感器定位在茎上,每天都能获得外部平面探头输入阻抗实分量的频率(fr)偏移和振幅峰值变化(ℜ(Zinput))。这些测量数据与在四个不同生长阶段破坏性获取的形态生理参数相关。结果表明,茎干淡水含量(FWCstem)与fr(r >-0.64)和振幅峰值(ℜ (Zinput))(r >-0.70)之间的线性相关,证明传感器有能力识别两种水处理之间茎干介电性质的变化。同时,传感器的响应也证明了其识别茎干形态和组织变化的能力。根据初步研究结果,该传感器有望用于植物水分状况的实时监测,从而促进经济和环境可持续的作物管理实践。虽然目前植物含水量与传感器测量值之间的相关性还需要进一步完善,以符合严格的工业标准,但利用物联网方法,可以实现大规模应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
An application oriented all-round intelligent weeding machine with enhanced YOLOv5 Characterising vibration patterns of winter jujube trees to optimise automated fruit harvesting UAV multispectral remote sensing for agriculture: A comparative study of radiometric correction methods under varying illumination conditions Effects of polyphenol-rich extracts and compounds on methane and ammonia emissions from pig slurry during 28-day incubation Optimising maize threshing process with temporal proximity soft actor-critic deep reinforcement learning algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1