Citrus fruit diameter estimation in the field using monocular camera

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2025-03-01 DOI:10.1016/j.biosystemseng.2025.02.012
Hongchun Qu , Haitong Du , Xiaoming Tang , Shidong Zhai
{"title":"Citrus fruit diameter estimation in the field using monocular camera","authors":"Hongchun Qu ,&nbsp;Haitong Du ,&nbsp;Xiaoming Tang ,&nbsp;Shidong Zhai","doi":"10.1016/j.biosystemseng.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient measurement of citrus fruit size is essential for managing tree form and estimating yields. Conventional manual methods are reliable but highly labour-intensive, while existing machine vision solutions often require specialised setups (e.g., distance calibration or 3D sensors). In this study, a low-cost, monocular-based framework that uses mature and healthy leaves as natural reference objects was proposed, eliminating the need for manual markers or complex camera parameter calibration. By compiling an offline leaf-size distribution from multiple citrus varieties, this method automatically converts fruit pixels to real-world diameters using the largest near-frontal leaf in each image. Further, the work integrates the deformable convolution (DNCv2) and shuffle attention (SA) into a YOLOv8 detector to improve occlusion handling, ensuring robust detection even when fruits are partially obscured by foliage. Extensive validation on three different citrus cultivars shows that leaf-size variability contributes less than 3.2% relative error in diameter estimation, while the overall approach achieves 93.14% accuracy and <em>R</em><sup>2</sup> = 0.76. Key contributions include: (1) a novel monocular technique leveraging inherent orchard elements (leaves) as references, (2) advanced detection modules to tackle partial occlusion, (3) cross-variety validation demonstrating consistent performance, and (4) a fast, user-friendly workflow suitable for real-world orchard applications. Future work will explore multi-frame or multi-view strategies to further refine diameter measurement under heavy occlusion.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"252 ","pages":"Pages 47-60"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511025000388","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and efficient measurement of citrus fruit size is essential for managing tree form and estimating yields. Conventional manual methods are reliable but highly labour-intensive, while existing machine vision solutions often require specialised setups (e.g., distance calibration or 3D sensors). In this study, a low-cost, monocular-based framework that uses mature and healthy leaves as natural reference objects was proposed, eliminating the need for manual markers or complex camera parameter calibration. By compiling an offline leaf-size distribution from multiple citrus varieties, this method automatically converts fruit pixels to real-world diameters using the largest near-frontal leaf in each image. Further, the work integrates the deformable convolution (DNCv2) and shuffle attention (SA) into a YOLOv8 detector to improve occlusion handling, ensuring robust detection even when fruits are partially obscured by foliage. Extensive validation on three different citrus cultivars shows that leaf-size variability contributes less than 3.2% relative error in diameter estimation, while the overall approach achieves 93.14% accuracy and R2 = 0.76. Key contributions include: (1) a novel monocular technique leveraging inherent orchard elements (leaves) as references, (2) advanced detection modules to tackle partial occlusion, (3) cross-variety validation demonstrating consistent performance, and (4) a fast, user-friendly workflow suitable for real-world orchard applications. Future work will explore multi-frame or multi-view strategies to further refine diameter measurement under heavy occlusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
Editorial Board Mechanism of rice bran removal at individual grain and population levels in abrasive rice mill Citrus fruit diameter estimation in the field using monocular camera Detection and tracking of oestrus dairy cows based on improved YOLOv8n and TransT models Early detection of downy mildew in vineyards using deep neural networks for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1