{"title":"Gliotoxin triggers cell death through multifaceted targeting of cancer-inducing genes in breast cancer therapy","authors":"Sujisha S. Nambiar , Siddhartha Sankar Ghosh , Gurvinder Kaur Saini","doi":"10.1016/j.compbiolchem.2024.108170","DOIUrl":null,"url":null,"abstract":"<div><p>Fungal secondary metabolites have a long history of contributing to pharmaceuticals, notably in the development of antibiotics and immunosuppressants. Harnessing their potent bioactivities, these compounds are now being explored for cancer therapy, by targeting and disrupting the genes that induce cancer progression. The current study explores the anticancer potential of gliotoxin, a fungal secondary metabolite, which encompasses a multi-faceted approach integrating computational predictions, molecular dynamics simulations, and comprehensive experimental validations. In-silico studies have identified potential gliotoxin targets, including MAPK1, NFKB1, HIF1A, TDP1, TRIM24, and CTSD which are involved in critical pathways in cancer such as the NF-κB signaling pathway, MAPK/ERK signaling pathway, hypoxia signaling pathway, Wnt/β-catenin pathway, and other essential cellular processes. The gene expression analysis results indicated all the identified targets are overexpressed in various breast cancer subtypes. Subsequent molecular docking and dynamics simulations have revealed stable binding of gliotoxin with TDP1 and HIF1A. Cell viability assays exhibited a dose-dependent decreasing pattern with its remarkable IC<sub>50</sub> values of 0.32, 0.14, and 0.53 μM for MDA-MB-231, MDA-MB-468, and MCF-7 cells, respectively. Likewise, in 3D tumor spheroids, gliotoxin exhibited a notable decrease in viability indicating its effectiveness against solid tumors. Furthermore, gene expression studies using Real-time PCR revealed a reduction of expression of cancer-inducing genes, MAPK1, HIF1A, TDP1, and TRIM24 upon gliotoxin treatment. These findings collectively underscore the promising anticancer potential of gliotoxin through multi-targeting cancer-promoting genes, positioning it as a promising therapeutic option for breast cancer.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"112 ","pages":"Article 108170"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001580","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal secondary metabolites have a long history of contributing to pharmaceuticals, notably in the development of antibiotics and immunosuppressants. Harnessing their potent bioactivities, these compounds are now being explored for cancer therapy, by targeting and disrupting the genes that induce cancer progression. The current study explores the anticancer potential of gliotoxin, a fungal secondary metabolite, which encompasses a multi-faceted approach integrating computational predictions, molecular dynamics simulations, and comprehensive experimental validations. In-silico studies have identified potential gliotoxin targets, including MAPK1, NFKB1, HIF1A, TDP1, TRIM24, and CTSD which are involved in critical pathways in cancer such as the NF-κB signaling pathway, MAPK/ERK signaling pathway, hypoxia signaling pathway, Wnt/β-catenin pathway, and other essential cellular processes. The gene expression analysis results indicated all the identified targets are overexpressed in various breast cancer subtypes. Subsequent molecular docking and dynamics simulations have revealed stable binding of gliotoxin with TDP1 and HIF1A. Cell viability assays exhibited a dose-dependent decreasing pattern with its remarkable IC50 values of 0.32, 0.14, and 0.53 μM for MDA-MB-231, MDA-MB-468, and MCF-7 cells, respectively. Likewise, in 3D tumor spheroids, gliotoxin exhibited a notable decrease in viability indicating its effectiveness against solid tumors. Furthermore, gene expression studies using Real-time PCR revealed a reduction of expression of cancer-inducing genes, MAPK1, HIF1A, TDP1, and TRIM24 upon gliotoxin treatment. These findings collectively underscore the promising anticancer potential of gliotoxin through multi-targeting cancer-promoting genes, positioning it as a promising therapeutic option for breast cancer.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.