Current state-of-the art review of footwear-ground friction

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Friction Pub Date : 2024-08-14 DOI:10.1007/s40544-024-0905-4
David Rebenda, Tomáš Sáha
{"title":"Current state-of-the art review of footwear-ground friction","authors":"David Rebenda, Tomáš Sáha","doi":"10.1007/s40544-024-0905-4","DOIUrl":null,"url":null,"abstract":"<p>The most important role of footwear is to ensure safe, functional walking, and foot protection. For the proper functionality of not only the work shoes, the anti-slip behavior of the shoe under various conditions and environments plays an important role in the prevention of slips, trips, falls, and consequent injuries. This article is intended to review the current understanding of the frictional mechanisms between shoe outsoles and various counterfaces that impact the evaluation of outsole slipperiness. Current research focuses on the mechanisms driving outsole friction on different ground surfaces or the definition and description of parameters that influence outsole friction. Subsequently, the review discusses the effect of various surface contaminants on footwear friction. Lastly, challenges and outlooks in the field of footwear outsoles are briefly mentioned.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0905-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The most important role of footwear is to ensure safe, functional walking, and foot protection. For the proper functionality of not only the work shoes, the anti-slip behavior of the shoe under various conditions and environments plays an important role in the prevention of slips, trips, falls, and consequent injuries. This article is intended to review the current understanding of the frictional mechanisms between shoe outsoles and various counterfaces that impact the evaluation of outsole slipperiness. Current research focuses on the mechanisms driving outsole friction on different ground surfaces or the definition and description of parameters that influence outsole friction. Subsequently, the review discusses the effect of various surface contaminants on footwear friction. Lastly, challenges and outlooks in the field of footwear outsoles are briefly mentioned.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鞋类与地面摩擦的最新研究成果综述
鞋类最重要的作用是确保安全、实用的行走和足部保护。不仅要保证工作鞋的正常功能,鞋子在各种条件和环境下的防滑性能对防止滑倒、绊倒、摔倒以及由此造成的伤害也起着重要作用。本文旨在回顾目前对影响外底防滑性评估的鞋底与各种表面之间摩擦机制的理解。目前的研究主要集中在鞋底在不同地面上的摩擦机理或影响鞋底摩擦的参数的定义和描述。随后,综述讨论了各种表面污染物对鞋类摩擦力的影响。最后,简要介绍了鞋类外底领域面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
期刊最新文献
A “bricks-and-mortar” structured graphene oxide/polyvinyl alcohol coating: enhanced water interfacial lubrication and durability Lubrication antagonism mechanism of nano-MoS2 and soot particles in ester base oil Excellent lubricating hydrogels with rapid photothermal sterilization for medical catheters coating A robust low-friction triple network hydrogel based on multiple synergistic enhancement mechanisms Tribological behavior of TiN, AlTiN, and AlTiCrN coatings in atmospheric and vacuum environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1