Diamond Homoepitaxial Growth Technology toward Wafer Fabrication, Atomically Controlled Surfaces, and Low Resistivity

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of materials research Pub Date : 2024-08-13 DOI:10.1021/accountsmr.4c00123
Kimiyoshi Ichikawa, Tsubasa Matsumoto, Takao Inokuma, Satoshi Yamasaki, Christoph E. Nebel, Norio Tokuda
{"title":"Diamond Homoepitaxial Growth Technology toward Wafer Fabrication, Atomically Controlled Surfaces, and Low Resistivity","authors":"Kimiyoshi Ichikawa, Tsubasa Matsumoto, Takao Inokuma, Satoshi Yamasaki, Christoph E. Nebel, Norio Tokuda","doi":"10.1021/accountsmr.4c00123","DOIUrl":null,"url":null,"abstract":"Strong covalent bonds provide diamond with superior properties such as higher thermal conductivity, electron/hole mobilities, and wider bandgap than those of other semiconductors. This makes diamonds promising for next-generation power devices, optoelectronics, quantum technologies, and sensors. However, there are still challenges in realizing practical diamond electronic applications. Key issues include controlling the microwave plasma chemical vapor deposition (MPCVD) growth process to achieve a large size, smooth surfaces, and desired conductivity. Standard semiconductor processing techniques like polishing and ion implantation also need improvement for diamonds. This Account outlines three MPCVD growth technologies being investigated at Kanazawa University to address these challenges.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strong covalent bonds provide diamond with superior properties such as higher thermal conductivity, electron/hole mobilities, and wider bandgap than those of other semiconductors. This makes diamonds promising for next-generation power devices, optoelectronics, quantum technologies, and sensors. However, there are still challenges in realizing practical diamond electronic applications. Key issues include controlling the microwave plasma chemical vapor deposition (MPCVD) growth process to achieve a large size, smooth surfaces, and desired conductivity. Standard semiconductor processing techniques like polishing and ion implantation also need improvement for diamonds. This Account outlines three MPCVD growth technologies being investigated at Kanazawa University to address these challenges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向晶圆制造、原子控制表面和低电阻率的金刚石同位外延生长技术
与其他半导体相比,强共价键使钻石具有更高的热导率、电子/空穴迁移率和更宽的带隙等优越性能。这使得金刚石在下一代功率器件、光电子学、量子技术和传感器领域大有可为。然而,在实现实际的钻石电子应用方面仍然存在挑战。关键问题包括控制微波等离子体化学气相沉积(MPCVD)生长过程,以实现大尺寸、光滑表面和理想的导电性。对于金刚石来说,抛光和离子注入等标准半导体加工技术也需要改进。本报告概述了金泽大学为应对这些挑战而正在研究的三种 MPCVD 生长技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
期刊最新文献
Intriguing Facets of Solution Processable Cross-Linked Porous Organic Polymers From Understanding of Catalyst Functioning toward Controlling Selectivity in CO2 Hydrogenation to Higher Hydrocarbons over Fe-Based Catalysts Chemosynthetic P4HB: A Ten-Year Journey from a “Non-Polymerizable” Monomer to a High-Performance Biomaterial Controlled Self-Assembly of Cellulose Nanocrystal as Custom-Tailored Photonics and Complex Soft Matter Molecular Assembly of Functional Motifs for Artificial Photosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1