Separable cell cycle arrest and immune response elicited through pharmacological CDK4/6 and MEK inhibition in RASmut disease models.

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-08-16 DOI:10.1158/1535-7163.MCT-24-0369
Jin Wu, Jianxin Wang, Thomas N O'Connor, Stephanie L Tzetzo, Katerina V Gurova, Erik S Knudsen, Agnieszka K Witkiewicz
{"title":"Separable cell cycle arrest and immune response elicited through pharmacological CDK4/6 and MEK inhibition in RASmut disease models.","authors":"Jin Wu, Jianxin Wang, Thomas N O'Connor, Stephanie L Tzetzo, Katerina V Gurova, Erik S Knudsen, Agnieszka K Witkiewicz","doi":"10.1158/1535-7163.MCT-24-0369","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified a high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TBK1(TANK-binding kinase 1) inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment, and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcoma.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified a high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TBK1(TANK-binding kinase 1) inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment, and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcoma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 RASmut 疾病模型中通过药理 CDK4/6 和 MEK 抑制引起可分离的细胞周期停滞和免疫反应。
CDK4/6和MEK抑制剂联合作为一种治疗策略已在各种癌症模型中显示出前景,尤其是在携带RAS突变的癌症模型中。最初的高通量药物筛选发现,CDK4/6抑制剂palbociclib和MEK抑制剂曲美替尼联用治疗软组织肉瘤具有高度协同作用。在RAS突变模型中,palbociclib和曲美替尼的联合治疗可诱导G1细胞周期显著停滞,从而明显减少细胞的增殖和生长。CRISPR 介导的 RB1 缺失导致对 CDK4/6 和 MEK 抑制的反应减弱,这在细胞培养和异种移植模型中都得到了验证。除了细胞周期抑制作用外,通路富集分析还显示,CDK4/6和MEK抑制可显著激活干扰素通路。这种基因表达的诱导与逆转录病毒元件的上调有关。TBK1(TANK结合激酶1)抑制剂GSK8612选择性地阻断了palbociclib和曲美替尼治疗诱导的干扰素相关基因的诱导,并强调了CDK4/6和MEK联合抑制引起的可分离的表观遗传学反应。总之,这些发现为CDK4/6和MEK抑制在软组织肉瘤中的治疗潜力提供了重要的机理启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
A small molecule BCL6 inhibitor effectively suppresses diffuse large B cell lymphoma cells growth. Riluzole Enhancing anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer. Tumor integrin-targeted glucose oxidase enzyme promotes ROS-mediated cell death that combines with interferon alpha therapy for tumor control. Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate. Zelenirstat Inhibits N-Myristoyltransferases to Disrupt Src Family Kinase Signalling and Oxidative Phosphorylation Killing Acute Myeloid Leukemia Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1