Qiang Guo, Caitlin N Vitro, Drake M Crawford, Bo Li
{"title":"A diazeniumdiolate signal in <i>Pseudomonas syringae</i> upregulates virulence factors and promotes survival in plants.","authors":"Qiang Guo, Caitlin N Vitro, Drake M Crawford, Bo Li","doi":"10.1094/MPMI-06-24-0069-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas syringae</i> infects a wide variety of crops. The <i>mangotoxin-generating operon</i> (<i>mgo</i>) is conserved across many <i>P. syringae</i> strains and is responsible for producing an extracellular chemical signal, leudiazen. Disruption of the <i>mgoA</i> gene in <i>P. syringae</i> pv. <i>syringae</i> (<i>Pss</i>) UMAF0158 alleviated tomato chlorosis caused by this bacterium. We showed that deletion of entire <i>mgo</i> reduced <i>Pss</i> UMAF0158 population in tomato leaflets. Leudiazen restored the signaling activity of the deletion mutant at a concentration as low as 10 nM. Both the diazeniumdiolate and isobutyl groups of leudiazen are critical for this potent signaling activity. Transcriptional analysis showed that <i>mgo</i> and leudiazen induce the expression of <i>mangotoxin biosynthetic operon</i> as well as an uncharacterized gene cluster, RS17235-RS17245. We found that this cluster enhances survival of <i>Pss</i> UMAF0158 in planta and is widely distributed in <i>P. syringae</i> strains. Our results demonstrate that <i>mgo</i> plays prominent roles in the virulence and growth of <i>P. syringae</i>. The <i>mgo</i> and <i>mgo</i>-like signaling systems in different bacteria likely regulate diverse microbe-host interactions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-06-24-0069-R","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas syringae infects a wide variety of crops. The mangotoxin-generating operon (mgo) is conserved across many P. syringae strains and is responsible for producing an extracellular chemical signal, leudiazen. Disruption of the mgoA gene in P. syringae pv. syringae (Pss) UMAF0158 alleviated tomato chlorosis caused by this bacterium. We showed that deletion of entire mgo reduced Pss UMAF0158 population in tomato leaflets. Leudiazen restored the signaling activity of the deletion mutant at a concentration as low as 10 nM. Both the diazeniumdiolate and isobutyl groups of leudiazen are critical for this potent signaling activity. Transcriptional analysis showed that mgo and leudiazen induce the expression of mangotoxin biosynthetic operon as well as an uncharacterized gene cluster, RS17235-RS17245. We found that this cluster enhances survival of Pss UMAF0158 in planta and is widely distributed in P. syringae strains. Our results demonstrate that mgo plays prominent roles in the virulence and growth of P. syringae. The mgo and mgo-like signaling systems in different bacteria likely regulate diverse microbe-host interactions.