{"title":"Sustainable microcrystalline cellulose extracted from biowaste Albezia lebeck L. leaves: Biomass exfoliation and physicochemical characterization.","authors":"Murugesan Palaniappan","doi":"10.1111/ppl.14447","DOIUrl":null,"url":null,"abstract":"<p><p>There is a focus on sustainability when manufacturing materials. Utilizing biobased materials and replacing fossil-based products is the main research focus. Bio-composite materials are applied to packaging, filler coatings, and pharmaceuticals. Here, we used the leaves of the agro-waste plant Albizia lebeck L. to extract cellulose. Chemical treatment causing strong acid hydrolysis successfully extracted the cellulose content from the leaves. The cellulose obtained was then strengthened with polylactic acid to make a biobased film for future applications. Fourier transform spectroscopy, scanning electron microscopy, thermal analysis, particle size analysis, visible UV and elemental analysis were all used to characterize the extracted cellulose. SEM and mechanical property analysis were used to check and describe the quality of the reinforced biofilm. The greatest cellulose yield from this raw material was 50.2%. The crystallinity index and crystallite size (CI 70.3% and CS 11.29 nm) were high in the extracted cellulose. The TG (DTG) curve analysis derivative revealed cellulose particle breakdown was initiated around 305.2°C and can endure temperatures up to 600°C. Biofilms reinforced with polylactic acid cellulose (1, 2, 3, and 5% by weight %) exhibited a smooth and parallel surface. As the filler concentration increased, minor agglomeration occurred. The tensile strength of pure polylactic acid (PLA) (34.72 MPa) was extended up to 38.91 MPa for 5% filler. Similarly, Young's modulus also increased to 5.24 MPa. However, the elongation break decreases with the increase of filler content, and the least value of decrease is 7.5 MPa. Concerning prospective implementations, it is expected that the biobased film and cellulose particles will prove to be more functional.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14447","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There is a focus on sustainability when manufacturing materials. Utilizing biobased materials and replacing fossil-based products is the main research focus. Bio-composite materials are applied to packaging, filler coatings, and pharmaceuticals. Here, we used the leaves of the agro-waste plant Albizia lebeck L. to extract cellulose. Chemical treatment causing strong acid hydrolysis successfully extracted the cellulose content from the leaves. The cellulose obtained was then strengthened with polylactic acid to make a biobased film for future applications. Fourier transform spectroscopy, scanning electron microscopy, thermal analysis, particle size analysis, visible UV and elemental analysis were all used to characterize the extracted cellulose. SEM and mechanical property analysis were used to check and describe the quality of the reinforced biofilm. The greatest cellulose yield from this raw material was 50.2%. The crystallinity index and crystallite size (CI 70.3% and CS 11.29 nm) were high in the extracted cellulose. The TG (DTG) curve analysis derivative revealed cellulose particle breakdown was initiated around 305.2°C and can endure temperatures up to 600°C. Biofilms reinforced with polylactic acid cellulose (1, 2, 3, and 5% by weight %) exhibited a smooth and parallel surface. As the filler concentration increased, minor agglomeration occurred. The tensile strength of pure polylactic acid (PLA) (34.72 MPa) was extended up to 38.91 MPa for 5% filler. Similarly, Young's modulus also increased to 5.24 MPa. However, the elongation break decreases with the increase of filler content, and the least value of decrease is 7.5 MPa. Concerning prospective implementations, it is expected that the biobased film and cellulose particles will prove to be more functional.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.