AutoSamp: Autoencoding k-space Sampling via Variational Information Maximization for 3D MRI.

Cagan Alkan, Morteza Mardani, Congyu Liao, Zhitao Li, Shreyas S Vasanawala, John M Pauly
{"title":"AutoSamp: Autoencoding k-space Sampling via Variational Information Maximization for 3D MRI.","authors":"Cagan Alkan, Morteza Mardani, Congyu Liao, Zhitao Li, Shreyas S Vasanawala, John M Pauly","doi":"10.1109/TMI.2024.3443292","DOIUrl":null,"url":null,"abstract":"<p><p>Accelerated MRI protocols routinely involve a predefined sampling pattern that undersamples the k-space. Finding an optimal pattern can enhance the reconstruction quality, however this optimization is a challenging task. To address this challenge, we introduce a novel deep learning framework, AutoSamp, based on variational information maximization that enables joint optimization of sampling pattern and reconstruction of MRI scans. We represent the encoder as a non-uniform Fast Fourier Transform that allows continuous optimization of k-space sample locations on a non-Cartesian plane, and the decoder as a deep reconstruction network. Experiments on public 3D acquired MRI datasets show improved reconstruction quality of the proposed AutoSamp method over the prevailing variable density and variable density Poisson disc sampling for both compressed sensing and deep learning reconstructions. We demonstrate that our data-driven sampling optimization method achieves 4.4dB, 2.0dB, 0.75dB, 0.7dB PSNR improvements over reconstruction with Poisson Disc masks for acceleration factors of R = 5, 10, 15, 25, respectively. Prospectively accelerated acquisitions with 3D FSE sequences using our optimized sampling patterns exhibit improved image quality and sharpness. Furthermore, we analyze the characteristics of the learned sampling patterns with respect to changes in acceleration factor, measurement noise, underlying anatomy, and coil sensitivities. We show that all these factors contribute to the optimization result by affecting the sampling density, k-space coverage and point spread functions of the learned sampling patterns.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3443292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerated MRI protocols routinely involve a predefined sampling pattern that undersamples the k-space. Finding an optimal pattern can enhance the reconstruction quality, however this optimization is a challenging task. To address this challenge, we introduce a novel deep learning framework, AutoSamp, based on variational information maximization that enables joint optimization of sampling pattern and reconstruction of MRI scans. We represent the encoder as a non-uniform Fast Fourier Transform that allows continuous optimization of k-space sample locations on a non-Cartesian plane, and the decoder as a deep reconstruction network. Experiments on public 3D acquired MRI datasets show improved reconstruction quality of the proposed AutoSamp method over the prevailing variable density and variable density Poisson disc sampling for both compressed sensing and deep learning reconstructions. We demonstrate that our data-driven sampling optimization method achieves 4.4dB, 2.0dB, 0.75dB, 0.7dB PSNR improvements over reconstruction with Poisson Disc masks for acceleration factors of R = 5, 10, 15, 25, respectively. Prospectively accelerated acquisitions with 3D FSE sequences using our optimized sampling patterns exhibit improved image quality and sharpness. Furthermore, we analyze the characteristics of the learned sampling patterns with respect to changes in acceleration factor, measurement noise, underlying anatomy, and coil sensitivities. We show that all these factors contribute to the optimization result by affecting the sampling density, k-space coverage and point spread functions of the learned sampling patterns.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoSamp:通过变异信息最大化对三维核磁共振成像的 k 空间采样进行自动编码。
加速核磁共振成像方案通常会采用预先确定的采样模式,对 k 空间进行低采样。寻找最佳模式可以提高重建质量,但这种优化是一项具有挑战性的任务。为了应对这一挑战,我们引入了一种基于变异信息最大化的新型深度学习框架 AutoSamp,该框架能对磁共振成像扫描的采样模式和重建进行联合优化。我们将编码器表示为非均匀快速傅立叶变换,允许在非笛卡尔平面上连续优化 k 空间采样位置,将解码器表示为深度重建网络。在公开的三维核磁共振成像数据集上进行的实验表明,在压缩传感和深度学习重建方面,所提出的 AutoSamp 方法比现有的变密度和变密度泊松圆盘采样法提高了重建质量。我们证明,在加速因子为 R = 5、10、15、25 时,我们的数据驱动采样优化方法比使用泊松圆盘掩模重建的 PSNR 分别提高了 4.4dB、2.0dB、0.75dB、0.7dB。使用我们优化的采样模式的三维 FSE 序列的前瞻性加速采集显示出更高的图像质量和清晰度。此外,我们还分析了学习到的采样模式在加速因子、测量噪声、基础解剖和线圈灵敏度变化方面的特点。我们发现,所有这些因素都会影响学习到的采样模式的采样密度、k 空间覆盖率和点扩散函数,从而对优化结果产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1