Effect of manganese salt type on the structure and zinc storage property of Mn2O3/Mn3O4 composites synthesized by sucrose-assisted thermal decomposition method
Jinhu Li , Jinhuan Yao , Haiyan Chen , Jiqiong Jiang , Guanlong Song , Yanwei Li
{"title":"Effect of manganese salt type on the structure and zinc storage property of Mn2O3/Mn3O4 composites synthesized by sucrose-assisted thermal decomposition method","authors":"Jinhu Li , Jinhuan Yao , Haiyan Chen , Jiqiong Jiang , Guanlong Song , Yanwei Li","doi":"10.1016/j.ssi.2024.116653","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites are prepared by a facile sucrose-assisted thermal decomposition method using MnCl<sub>2</sub>·4H<sub>2</sub>O, Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O, and MnSO<sub>4</sub>·H<sub>2</sub>O as manganese sources, respectively. The results demonstrate that manganese salt type has a significant influence on the morphology and phase composition of the final Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites. The composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O or Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O possess a porous sheet-like morphology, while the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from MnSO<sub>4</sub>·H<sub>2</sub>O has a much finer nanosheet morphology. The Mn<sub>2</sub>O<sub>3</sub> contents in the composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O, Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O, and MnSO<sub>4</sub>·H<sub>2</sub>O are about 57.8%, 95.0%, and 27.0%, respectively. Due to the differences in morphology and phase composition, the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O and Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O exhibit better zinc storage properties than the composite prepared from MnSO<sub>4</sub>·H<sub>2</sub>O. Among the three samples, the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O shows superior zinc storage capability in short-term cycling and the best rate capability; the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O presents the best long-term cycling performance and moderate rate capability; the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from MnSO<sub>4</sub>·H<sub>2</sub>O displays the worst zinc storage capability and rate performance. EIS and CV analysis demonstrate that the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O or Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O have a low charge transfer resistance and obvious pseudocapacitive behavior during the charge/discharge process. The charge/discharge mechanism of the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites is also explored by ex-situ XRD characterization. This work provides a reference for the simple preparation of high-performance Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites utilizing different manganese salts.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116653"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002017","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, Mn2O3/Mn3O4 composites are prepared by a facile sucrose-assisted thermal decomposition method using MnCl2·4H2O, Mn(CH3COO)2·4H2O, and MnSO4·H2O as manganese sources, respectively. The results demonstrate that manganese salt type has a significant influence on the morphology and phase composition of the final Mn2O3/Mn3O4 composites. The composites prepared from MnCl2·4H2O or Mn(CH3COO)2·4H2O possess a porous sheet-like morphology, while the Mn2O3/Mn3O4 composite prepared from MnSO4·H2O has a much finer nanosheet morphology. The Mn2O3 contents in the composites prepared from MnCl2·4H2O, Mn(CH3COO)2·4H2O, and MnSO4·H2O are about 57.8%, 95.0%, and 27.0%, respectively. Due to the differences in morphology and phase composition, the Mn2O3/Mn3O4 composites prepared from MnCl2·4H2O and Mn(CH3COO)2·4H2O exhibit better zinc storage properties than the composite prepared from MnSO4·H2O. Among the three samples, the Mn2O3/Mn3O4 composite prepared from Mn(CH3COO)2·4H2O shows superior zinc storage capability in short-term cycling and the best rate capability; the Mn2O3/Mn3O4 composite prepared from MnCl2·4H2O presents the best long-term cycling performance and moderate rate capability; the Mn2O3/Mn3O4 composite prepared from MnSO4·H2O displays the worst zinc storage capability and rate performance. EIS and CV analysis demonstrate that the Mn2O3/Mn3O4 composites prepared from MnCl2·4H2O or Mn(CH3COO)2·4H2O have a low charge transfer resistance and obvious pseudocapacitive behavior during the charge/discharge process. The charge/discharge mechanism of the Mn2O3/Mn3O4 composites is also explored by ex-situ XRD characterization. This work provides a reference for the simple preparation of high-performance Mn2O3/Mn3O4 composites utilizing different manganese salts.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.