{"title":"The unique properties of the monomolecular surface layer of reduced ceria","authors":"Ilan Riess","doi":"10.1016/j.ssi.2025.116807","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental results of the defect concentrations in highly reduced, monomolecular surface layer of ceria-based oxides, are discussed. The data is XPS vs. oxygen pressure relations of reduced Pr<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>2.-x</sub> (PCO), CeO<sub>2-x</sub> and Sm<sub>0.2</sub>Ce<sub>0.8</sub>O<sub>1.9-x</sub> (SDC). In PCO the analysis predicts that the surface layer is negatively charged and the concentration of Pr<sup>3+</sup> ions is higher than in the bulk. A double layer exists between the surface layer and the bulk. In CeO<sub>2</sub> and SDC the concentration of Ce<sup>3+</sup> ions and oxygen vacancies in the surface is higher than in the bulk. The surface is neutral. The analysis predicts that the surface layer is metallic, i.e. the electrons on Ce<sup>3+</sup> are delocalized and not localized small polarons. The bulk is a semiconductor. The Ce<sup>3+</sup> ions are randomly distributed on the Ce sublattice and not in the boundary of oxygen vacancies. The latter are doubly ionized vacancies <span><math><msup><msub><mtext>V</mtext><mtext>O</mtext></msub><mrow><mo>•</mo><mo>•</mo></mrow></msup></math></span>despite the presence of a high concentration of quasi free electrons. It is also predicted that the surface of ceria or SDC has a phase diagram of temperature vs. oxygen vacancy concentration, at <em>T</em> > 450 °C, like that of ceria bulk or SDC bulk, respectively. Further, the phase diagram of SDC bulk (and surface) is like that of ceria bulk shifted to a higher oxygen vacancy concentration and doping has no other effect at elevated temperature. Both in ceria and SDC the difference between the surface and the corresponding bulk is only in the oxygen pressure at which a level of reduction is reached, with the surface more easily being reduced than the bulk.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"421 ","pages":"Article 116807"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000268","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental results of the defect concentrations in highly reduced, monomolecular surface layer of ceria-based oxides, are discussed. The data is XPS vs. oxygen pressure relations of reduced Pr0.1Ce0.9O2.-x (PCO), CeO2-x and Sm0.2Ce0.8O1.9-x (SDC). In PCO the analysis predicts that the surface layer is negatively charged and the concentration of Pr3+ ions is higher than in the bulk. A double layer exists between the surface layer and the bulk. In CeO2 and SDC the concentration of Ce3+ ions and oxygen vacancies in the surface is higher than in the bulk. The surface is neutral. The analysis predicts that the surface layer is metallic, i.e. the electrons on Ce3+ are delocalized and not localized small polarons. The bulk is a semiconductor. The Ce3+ ions are randomly distributed on the Ce sublattice and not in the boundary of oxygen vacancies. The latter are doubly ionized vacancies despite the presence of a high concentration of quasi free electrons. It is also predicted that the surface of ceria or SDC has a phase diagram of temperature vs. oxygen vacancy concentration, at T > 450 °C, like that of ceria bulk or SDC bulk, respectively. Further, the phase diagram of SDC bulk (and surface) is like that of ceria bulk shifted to a higher oxygen vacancy concentration and doping has no other effect at elevated temperature. Both in ceria and SDC the difference between the surface and the corresponding bulk is only in the oxygen pressure at which a level of reduction is reached, with the surface more easily being reduced than the bulk.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.