{"title":"Development of hydrophobic graphenoid layer on Portland cement for non-thermal plasma method","authors":"","doi":"10.1016/j.diamond.2024.111499","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the development of hydrophobic layer on Portland cement using graphenoid materials to enhance impermeability and hydrophobicity. X-ray diffraction analysis indicated that characteristic peaks associated with concrete, such as ettringite, calcium hydroxide, and calcite, remained intact. The application of graphenoid material produced by non-thermal plasma resulted in the formation of carbonaceous structures, minimally affecting the overall cement structure. Raman spectroscopy provided detailed insights into the composition, highlighting the presence of specific and indicating boundary defects. Moreover, contact angle measurements confirmed a substantial increase in hydrophobicity for the graphene-coated cement, with an average angle of 117° ± 4.72° demonstrated graphenoid material layers deposited over structural defects, effectively waterproofing and enhancing local hydrophobicity.</p></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092596352400712X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the development of hydrophobic layer on Portland cement using graphenoid materials to enhance impermeability and hydrophobicity. X-ray diffraction analysis indicated that characteristic peaks associated with concrete, such as ettringite, calcium hydroxide, and calcite, remained intact. The application of graphenoid material produced by non-thermal plasma resulted in the formation of carbonaceous structures, minimally affecting the overall cement structure. Raman spectroscopy provided detailed insights into the composition, highlighting the presence of specific and indicating boundary defects. Moreover, contact angle measurements confirmed a substantial increase in hydrophobicity for the graphene-coated cement, with an average angle of 117° ± 4.72° demonstrated graphenoid material layers deposited over structural defects, effectively waterproofing and enhancing local hydrophobicity.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.