Development of hydrophobic graphenoid layer on Portland cement for non-thermal plasma method

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Diamond and Related Materials Pub Date : 2024-08-14 DOI:10.1016/j.diamond.2024.111499
{"title":"Development of hydrophobic graphenoid layer on Portland cement for non-thermal plasma method","authors":"","doi":"10.1016/j.diamond.2024.111499","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the development of hydrophobic layer on Portland cement using graphenoid materials to enhance impermeability and hydrophobicity. X-ray diffraction analysis indicated that characteristic peaks associated with concrete, such as ettringite, calcium hydroxide, and calcite, remained intact. The application of graphenoid material produced by non-thermal plasma resulted in the formation of carbonaceous structures, minimally affecting the overall cement structure. Raman spectroscopy provided detailed insights into the composition, highlighting the presence of specific and indicating boundary defects. Moreover, contact angle measurements confirmed a substantial increase in hydrophobicity for the graphene-coated cement, with an average angle of 117° ± 4.72° demonstrated graphenoid material layers deposited over structural defects, effectively waterproofing and enhancing local hydrophobicity.</p></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092596352400712X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the development of hydrophobic layer on Portland cement using graphenoid materials to enhance impermeability and hydrophobicity. X-ray diffraction analysis indicated that characteristic peaks associated with concrete, such as ettringite, calcium hydroxide, and calcite, remained intact. The application of graphenoid material produced by non-thermal plasma resulted in the formation of carbonaceous structures, minimally affecting the overall cement structure. Raman spectroscopy provided detailed insights into the composition, highlighting the presence of specific and indicating boundary defects. Moreover, contact angle measurements confirmed a substantial increase in hydrophobicity for the graphene-coated cement, with an average angle of 117° ± 4.72° demonstrated graphenoid material layers deposited over structural defects, effectively waterproofing and enhancing local hydrophobicity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非热等离子体法在硅酸盐水泥上开发疏水性石墨烯层
本研究的重点是利用石墨烯材料在波特兰水泥上形成疏水层,以增强抗渗性和疏水性。X 射线衍射分析表明,与混凝土相关的特征峰,如乙曲石、氢氧化钙和方解石,保持不变。应用非热等离子体产生的类石墨材料形成了碳质结构,对整体水泥结构的影响极小。拉曼光谱详细揭示了水泥的成分,突出显示了特定的边界缺陷。此外,接触角测量证实,石墨烯涂层水泥的疏水性大大增加,平均角度为 117° ± 4.72°,表明石墨烯材料层沉积在结构缺陷上,有效地防水并增强了局部疏水性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
期刊最新文献
Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Synthesis and characterizations of nanohybrids based on amino silane-graphene oxide decorated by zirconium oxide nanoparticles Unveiling Bi-decorated graphitic carbon nitride nanostructures for electrochemical sensors Graphene modulator and 2-bit encoder based on plasma induced transparency effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1