Chengjian Dai , Boxun Li , Lili Zeng , Qiang Wang , Zhiguo Chen , Yingxing Zeng , Xingjiao Zhang , Chaosheng Deng
{"title":"Graphene modulator and 2-bit encoder based on plasma induced transparency effect","authors":"Chengjian Dai , Boxun Li , Lili Zeng , Qiang Wang , Zhiguo Chen , Yingxing Zeng , Xingjiao Zhang , Chaosheng Deng","doi":"10.1016/j.diamond.2024.111715","DOIUrl":null,"url":null,"abstract":"<div><div>Within this study, a periodic metasurface structure made up of two graphene strips, two fan-shaped graphene and a square ring graphene with notches is introduced to achieve plasma-induced transparency (PIT). The PIT effect is analyzed utilizing the Lorentz oscillatory coupling model, and it has been discovered that the theoretical values closely match the simulated values. The role of the Fermi level adjustments in graphene on the PIT effect was examined, and the PIT window was dynamically modified as the Fermi level changed, which was used to realize a 2-bit graphene encoder at 5.78 THz and 7.18 THz. The encoder boasts a greatest modulation depth of 80.9 % and exhibits a minimal insertion loss of 0.17 dB. By controlling the polarization direction of the incident photoelectric field, a high performance dual-channel switching modulator is successfully realized. Moreover, by increasing carrier mobility, the depth of modulation for the modulator at 11.22 THz is increased from 97.5 % to 99.5 %, and the insertion loss has dropped from 0.075 dB to 0.06 dB. In addition, the structure has superior sensing properties and slow light properties, featuring a sensitivity reaching up to 1.07 THz/RIU and a maximum group index of 293. The outcomes of our study contribute novel insights for the advancement of modulator, encoder, sensor technology and slow-light devices.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111715"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009282","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Within this study, a periodic metasurface structure made up of two graphene strips, two fan-shaped graphene and a square ring graphene with notches is introduced to achieve plasma-induced transparency (PIT). The PIT effect is analyzed utilizing the Lorentz oscillatory coupling model, and it has been discovered that the theoretical values closely match the simulated values. The role of the Fermi level adjustments in graphene on the PIT effect was examined, and the PIT window was dynamically modified as the Fermi level changed, which was used to realize a 2-bit graphene encoder at 5.78 THz and 7.18 THz. The encoder boasts a greatest modulation depth of 80.9 % and exhibits a minimal insertion loss of 0.17 dB. By controlling the polarization direction of the incident photoelectric field, a high performance dual-channel switching modulator is successfully realized. Moreover, by increasing carrier mobility, the depth of modulation for the modulator at 11.22 THz is increased from 97.5 % to 99.5 %, and the insertion loss has dropped from 0.075 dB to 0.06 dB. In addition, the structure has superior sensing properties and slow light properties, featuring a sensitivity reaching up to 1.07 THz/RIU and a maximum group index of 293. The outcomes of our study contribute novel insights for the advancement of modulator, encoder, sensor technology and slow-light devices.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.