Unleashing the potential of mRNA: Overcoming delivery challenges with nanoparticles

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Bioengineering & Translational Medicine Pub Date : 2024-08-15 DOI:10.1002/btm2.10713
Qiang Chen, Ku‐Geng Huo, Sheng‐Min Ji, Shu‐De Pang, Tian‐Ying Sun, Yi Niu, Zi‐Hao Jiang, Peng Zhang, Shu‐Xin Han, Jin‐Yao Li
{"title":"Unleashing the potential of mRNA: Overcoming delivery challenges with nanoparticles","authors":"Qiang Chen, Ku‐Geng Huo, Sheng‐Min Ji, Shu‐De Pang, Tian‐Ying Sun, Yi Niu, Zi‐Hao Jiang, Peng Zhang, Shu‐Xin Han, Jin‐Yao Li","doi":"10.1002/btm2.10713","DOIUrl":null,"url":null,"abstract":"Messenger RNA (mRNA) has emerged as a promising therapeutic strategy for various diseases, including cancer, infectious diseases, and genetic disorders. The mRNA‐based therapeutics have gained significant attention due to their ability to regulate targeted cells, activate immune cells, and avoid potential risks associated with DNA‐based technology. However, the clinical application of mRNA in cancer therapy is hindered by the instability of RNA, physiological barriers, and the risk of immunogenic hurdles. To overcome these challenges and ensure the safe delivery of mRNA therapeutics to target sites, nanoparticle‐based delivery systems have been explored as potential tools in vitro and in vivo applications. This review provides a comprehensive overview of the current status of mRNA therapy, discussing its advantages and limitations, delivery strategies and materials, as well as applications in different fields. By exploring these aspects, the researcher can gain a more complete understanding of the current state, prospects, and challenges of mRNA technologies.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10713","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Messenger RNA (mRNA) has emerged as a promising therapeutic strategy for various diseases, including cancer, infectious diseases, and genetic disorders. The mRNA‐based therapeutics have gained significant attention due to their ability to regulate targeted cells, activate immune cells, and avoid potential risks associated with DNA‐based technology. However, the clinical application of mRNA in cancer therapy is hindered by the instability of RNA, physiological barriers, and the risk of immunogenic hurdles. To overcome these challenges and ensure the safe delivery of mRNA therapeutics to target sites, nanoparticle‐based delivery systems have been explored as potential tools in vitro and in vivo applications. This review provides a comprehensive overview of the current status of mRNA therapy, discussing its advantages and limitations, delivery strategies and materials, as well as applications in different fields. By exploring these aspects, the researcher can gain a more complete understanding of the current state, prospects, and challenges of mRNA technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
释放 mRNA 的潜力:利用纳米颗粒克服递送难题
信使核糖核酸(mRNA)已成为治疗各种疾病(包括癌症、传染病和遗传性疾病)的一种前景广阔的治疗策略。基于 mRNA 的疗法能够调控靶细胞、激活免疫细胞并避免与 DNA 技术相关的潜在风险,因而备受关注。然而,mRNA 在癌症治疗中的临床应用受到 RNA 不稳定性、生理障碍和免疫原性障碍风险的阻碍。为了克服这些挑战并确保将 mRNA 疗法安全地输送到靶点,人们探索了基于纳米颗粒的输送系统,将其作为体外和体内应用的潜在工具。本综述全面概述了 mRNA 疗法的现状,讨论了其优势和局限性、递送策略和材料以及在不同领域的应用。通过对这些方面的探讨,研究人员可以更全面地了解 mRNA 技术的现状、前景和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
期刊最新文献
Fecal microbiota transplantation for the treatment of intestinal and extra‐intestinal diseases: Mechanism basis, clinical application, and potential prospect ColMA‐based bioprinted 3D scaffold allowed to study tenogenic events in human tendon stem cells Facile minocycline deployment in gingiva using a dissolvable microneedle patch for the adjunctive treatment of periodontal disease Temperature‐sensitive sodium beta‐glycerophosphate/chitosan hydrogel loaded with all‐trans retinoic acid regulates Pin1 to inhibit the formation of spinal cord injury‐induced rat glial scar Recent regulatory developments in EU Medical Device Regulation and their impact on biomaterials translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1