Qiang Chen, Ku‐Geng Huo, Sheng‐Min Ji, Shu‐De Pang, Tian‐Ying Sun, Yi Niu, Zi‐Hao Jiang, Peng Zhang, Shu‐Xin Han, Jin‐Yao Li
{"title":"Unleashing the potential of mRNA: Overcoming delivery challenges with nanoparticles","authors":"Qiang Chen, Ku‐Geng Huo, Sheng‐Min Ji, Shu‐De Pang, Tian‐Ying Sun, Yi Niu, Zi‐Hao Jiang, Peng Zhang, Shu‐Xin Han, Jin‐Yao Li","doi":"10.1002/btm2.10713","DOIUrl":null,"url":null,"abstract":"Messenger RNA (mRNA) has emerged as a promising therapeutic strategy for various diseases, including cancer, infectious diseases, and genetic disorders. The mRNA‐based therapeutics have gained significant attention due to their ability to regulate targeted cells, activate immune cells, and avoid potential risks associated with DNA‐based technology. However, the clinical application of mRNA in cancer therapy is hindered by the instability of RNA, physiological barriers, and the risk of immunogenic hurdles. To overcome these challenges and ensure the safe delivery of mRNA therapeutics to target sites, nanoparticle‐based delivery systems have been explored as potential tools in vitro and in vivo applications. This review provides a comprehensive overview of the current status of mRNA therapy, discussing its advantages and limitations, delivery strategies and materials, as well as applications in different fields. By exploring these aspects, the researcher can gain a more complete understanding of the current state, prospects, and challenges of mRNA technologies.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10713","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Messenger RNA (mRNA) has emerged as a promising therapeutic strategy for various diseases, including cancer, infectious diseases, and genetic disorders. The mRNA‐based therapeutics have gained significant attention due to their ability to regulate targeted cells, activate immune cells, and avoid potential risks associated with DNA‐based technology. However, the clinical application of mRNA in cancer therapy is hindered by the instability of RNA, physiological barriers, and the risk of immunogenic hurdles. To overcome these challenges and ensure the safe delivery of mRNA therapeutics to target sites, nanoparticle‐based delivery systems have been explored as potential tools in vitro and in vivo applications. This review provides a comprehensive overview of the current status of mRNA therapy, discussing its advantages and limitations, delivery strategies and materials, as well as applications in different fields. By exploring these aspects, the researcher can gain a more complete understanding of the current state, prospects, and challenges of mRNA technologies.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.