Machine learning‐assisted point‐of‐care diagnostics for cardiovascular healthcare

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Bioengineering & Translational Medicine Pub Date : 2025-02-04 DOI:10.1002/btm2.70002
Kaidong Wang, Bing Tan, Xinfei Wang, Shicheng Qiu, Qiuping Zhang, Shaolei Wang, Ying‐Tzu Yen, Nan Jing, Changming Liu, Xuxu Chen, Shichang Liu, Yan Yu
{"title":"Machine learning‐assisted point‐of‐care diagnostics for cardiovascular healthcare","authors":"Kaidong Wang, Bing Tan, Xinfei Wang, Shicheng Qiu, Qiuping Zhang, Shaolei Wang, Ying‐Tzu Yen, Nan Jing, Changming Liu, Xuxu Chen, Shichang Liu, Yan Yu","doi":"10.1002/btm2.70002","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases (CVDs) continue to drive global mortality rates, underscoring an urgent need for advancements in healthcare solutions. The development of point‐of‐care (POC) devices that provide rapid diagnostic services near patients has garnered substantial attention, especially as traditional healthcare systems face challenges such as delayed diagnoses, inadequate care, and rising medical costs. The advancement of machine learning techniques has sparked considerable interest in medical research and engineering, offering ways to enhance diagnostic accuracy and relevance. Improved data interoperability and seamless connectivity could enable real‐time, continuous monitoring of cardiovascular health. Recent breakthroughs in computing power and algorithmic design, particularly deep learning frameworks that emulate neural processes, have revolutionized POC devices for CVDs, enabling more frequent detection of abnormalities and automated, expert‐level diagnosis. However, challenges such as data privacy concerns and biases in dataset representation continue to hinder clinical integration. Despite these barriers, the translational potential of machine learning‐assisted POC devices presents significant opportunities for advancement in CVDs healthcare.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"25 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) continue to drive global mortality rates, underscoring an urgent need for advancements in healthcare solutions. The development of point‐of‐care (POC) devices that provide rapid diagnostic services near patients has garnered substantial attention, especially as traditional healthcare systems face challenges such as delayed diagnoses, inadequate care, and rising medical costs. The advancement of machine learning techniques has sparked considerable interest in medical research and engineering, offering ways to enhance diagnostic accuracy and relevance. Improved data interoperability and seamless connectivity could enable real‐time, continuous monitoring of cardiovascular health. Recent breakthroughs in computing power and algorithmic design, particularly deep learning frameworks that emulate neural processes, have revolutionized POC devices for CVDs, enabling more frequent detection of abnormalities and automated, expert‐level diagnosis. However, challenges such as data privacy concerns and biases in dataset representation continue to hinder clinical integration. Despite these barriers, the translational potential of machine learning‐assisted POC devices presents significant opportunities for advancement in CVDs healthcare.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
期刊最新文献
Machine learning‐assisted point‐of‐care diagnostics for cardiovascular healthcare AI‐assisted warfarin dose optimisation with CURATE.AI for clinical impact: Retrospective data analysis Stem cell therapies in the clinic Multimodal near‐infrared molecular imaging of ex vivo endometrial carcinoma via CD47‐based targeted tracer Establishing a scalable perfusion strategy for the manufacture of CAR‐T cells in stirred‐tank bioreactors using a quality‐by‐design approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1