Optic generation and perpetuation of acoustic bubble clusters

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2024-08-15 DOI:10.1016/j.ultsonch.2024.107023
{"title":"Optic generation and perpetuation of acoustic bubble clusters","authors":"","doi":"10.1016/j.ultsonch.2024.107023","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-induced cavitation bubbles offer precise control of the flow in space and time, but they are rarely used for the mechanical and chemical processing of liquids. Instead, strong acoustic fields are commonly used to nucleate and drive cavitation bubbles for liquid process applications. While acoustic field creates many more cavitation events, the resulting chaotic dynamics offers little control on the fluid mechanics, i.e., where and how bubbles deliver their energy. Here we present a method that utilizes a laser to nucleate a single cavitation bubble, which is then driven into violent oscillations by the ultrasound field, resulting in splitting of the bubble followed by formation of a cluster of cavitation bubbles. This combination offers means for cavitation control not available in conventional acoustic cavitation. Here, the cavitation bubble is generated with a custom build pulsed laser that is focused below a sonotrode driven at 20 kHz. In absence of the acoustic driving the bubble reaches a maximum diameter of 130 µm with a lifetime of approximately 10 µs. In the presence of the acoustic field the first few expansions and bubble collapses are strongly affected by the phase of nucleation. Over successive acoustic cycles a small bubble cluster develops that loses its connection with the phase of generation. We study the dynamics in the free field and constrained by a rigid boundary. For both geometries the cluster over many acoustic cycles dies off, yet through repetitive optical bubble seeding the cluster lifetime and its location can be controlled.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002712/pdfft?md5=bf89a02bc1e1aa9f96d2e088f38a6661&pid=1-s2.0-S1350417724002712-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-induced cavitation bubbles offer precise control of the flow in space and time, but they are rarely used for the mechanical and chemical processing of liquids. Instead, strong acoustic fields are commonly used to nucleate and drive cavitation bubbles for liquid process applications. While acoustic field creates many more cavitation events, the resulting chaotic dynamics offers little control on the fluid mechanics, i.e., where and how bubbles deliver their energy. Here we present a method that utilizes a laser to nucleate a single cavitation bubble, which is then driven into violent oscillations by the ultrasound field, resulting in splitting of the bubble followed by formation of a cluster of cavitation bubbles. This combination offers means for cavitation control not available in conventional acoustic cavitation. Here, the cavitation bubble is generated with a custom build pulsed laser that is focused below a sonotrode driven at 20 kHz. In absence of the acoustic driving the bubble reaches a maximum diameter of 130 µm with a lifetime of approximately 10 µs. In the presence of the acoustic field the first few expansions and bubble collapses are strongly affected by the phase of nucleation. Over successive acoustic cycles a small bubble cluster develops that loses its connection with the phase of generation. We study the dynamics in the free field and constrained by a rigid boundary. For both geometries the cluster over many acoustic cycles dies off, yet through repetitive optical bubble seeding the cluster lifetime and its location can be controlled.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声波气泡群的光学生成和延续
激光诱导的空化气泡可在空间和时间上对流动进行精确控制,但很少用于液体的机械和化学处理。相反,在液体加工应用中,通常使用强声场来核化和驱动空化气泡。虽然声场会产生更多的空化事件,但由此产生的混乱动力学对流体力学,即气泡在哪里以及如何传递能量,几乎没有控制作用。在这里,我们介绍一种利用激光核化单个空化气泡的方法,该气泡在超声场的驱动下发生剧烈振荡,导致气泡分裂,随后形成空化气泡群。这种组合提供了传统声学空化所不具备的空化控制手段。在这里,空化气泡是由一个定制的脉冲激光器产生的,该激光器聚焦在一个以 20 kHz 频率驱动的声导管下方。在没有声波驱动的情况下,气泡的最大直径为 130 微米,寿命约为 10 微秒。在声场存在的情况下,最初的几次膨胀和气泡坍塌受到成核阶段的强烈影响。在连续的声波周期中,会形成一个小气泡簇,并失去与生成阶段的联系。我们研究了自由场和刚性边界约束下的动力学。对于这两种几何结构,气泡簇都会在多次声学周期中消失,但通过重复的光学气泡播种,气泡簇的寿命及其位置都可以得到控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Bubble shape instability of acoustic cavitation in molten metal used in ultrasonic casting Dissolution of EAF slag minerals in aqueous media: Effects of sonication on brownmillerite and gehlenite Insight into the effects of ultrasound-assisted intermittent tumbling on the gelation properties of myofibrillar proteins: Conformational modifications, intermolecular interactions, rheological properties and microstructure The improvement mechanism of volatile for cooked Tibetan pork assisted with ultrasound at low-temperature: Based on the differences in oxidation of lipid and protein Spatial regulation of hydrogel polymerization reaction using ultrasound-driven streaming vortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1