Regulating of wear properties through microstructure engineering in novel cost-effective Fe30Ni25Cr25Mo10Al10 high-entropy alloy processed by cyclic closed-die forging
{"title":"Regulating of wear properties through microstructure engineering in novel cost-effective Fe30Ni25Cr25Mo10Al10 high-entropy alloy processed by cyclic closed-die forging","authors":"Majid Naseri , Alena Myasnikova , Davood Gholami , Omid Imantalab , Dmitry Mikhailov , Mostafa Amra , Nataliya Shaburova , Milena Efimova , Aleksandr Orlov , Seyedmehdi Hosseini , Yong-Cheng Lin , Abdel-Hamid I. Mourad , Evgeny Trofimov","doi":"10.1016/j.jalmes.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel cost-effective Fe<sub>30</sub>Ni<sub>25</sub>Cr<sub>25</sub>Mo<sub>10</sub>Al<sub>10</sub> high-entropy alloy with a dual-phase microstructure that was processed using cyclic closed-die forging (CCDF) at room temperature for a maximum of six passes. The as-homogenized alloy exhibited [CrMoFe]-rich dendrites with dual-size morphology dispersed in an almost uniform face-centered cubic (FCC) matrix. It was found that as the number of CCDF passes increased, leading to a more homogenous nanograin, there was an accumulation of dislocations, fragmentation of [CrMoFe]-rich dendrites, and enhanced distribution within the matrix. These conditions were conducive to the creation of a nanostructured Fe<sub>30</sub>Ni<sub>25</sub>Cr<sub>25</sub>Mo<sub>10</sub>Al<sub>10</sub> alloy with superior mechanical properties. Texture analysis indicated that the prominent texture components for the Fe<sub>30</sub>Ni<sub>25</sub>Cr<sub>25</sub>Mo<sub>10</sub>Al<sub>10</sub> alloy after six passes were Rotated Cube {001}<110>, S {123}<634>, and Dillamore {4 4 11}<11 11 8>. After the sixth CCDF pass, the Fe<sub>30</sub>Ni<sub>25</sub>Cr<sub>25</sub>Mo<sub>10</sub>Al<sub>10</sub> alloy exhibited the highest microhardness (∼ 974 HV) and the lowest wear rate (∼ (0.8 ± 0.1) × 10<sup>–5</sup> mm<sup>3</sup>.N<sup>−1</sup>.m<sup>−1</sup>). Additionally, it was proposed that the development of the Rotated Cube {001}<110> texture component contributed positively to enhancing wear resistance in the cost-effective high-entropy alloys. Considering the obtained results, it is reasonable to propose that CCDF processing is significant potential for the advancement of cost-effective nanostructured high-entropy alloys for industrial applications.</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"7 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949917824000488/pdfft?md5=7ff953501b6dd13e1c8c0ad06f42d074&pid=1-s2.0-S2949917824000488-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel cost-effective Fe30Ni25Cr25Mo10Al10 high-entropy alloy with a dual-phase microstructure that was processed using cyclic closed-die forging (CCDF) at room temperature for a maximum of six passes. The as-homogenized alloy exhibited [CrMoFe]-rich dendrites with dual-size morphology dispersed in an almost uniform face-centered cubic (FCC) matrix. It was found that as the number of CCDF passes increased, leading to a more homogenous nanograin, there was an accumulation of dislocations, fragmentation of [CrMoFe]-rich dendrites, and enhanced distribution within the matrix. These conditions were conducive to the creation of a nanostructured Fe30Ni25Cr25Mo10Al10 alloy with superior mechanical properties. Texture analysis indicated that the prominent texture components for the Fe30Ni25Cr25Mo10Al10 alloy after six passes were Rotated Cube {001}<110>, S {123}<634>, and Dillamore {4 4 11}<11 11 8>. After the sixth CCDF pass, the Fe30Ni25Cr25Mo10Al10 alloy exhibited the highest microhardness (∼ 974 HV) and the lowest wear rate (∼ (0.8 ± 0.1) × 10–5 mm3.N−1.m−1). Additionally, it was proposed that the development of the Rotated Cube {001}<110> texture component contributed positively to enhancing wear resistance in the cost-effective high-entropy alloys. Considering the obtained results, it is reasonable to propose that CCDF processing is significant potential for the advancement of cost-effective nanostructured high-entropy alloys for industrial applications.