{"title":"Simulation of low energy building thermal energy cycle in IoT smart city planning based on environmental sensors and deep learning","authors":"","doi":"10.1016/j.tsep.2024.102809","DOIUrl":null,"url":null,"abstract":"<div><p>With the intensification of global climate change, the reduction of building energy consumption has become an important goal of smart city development. By optimizing the thermal energy circulation system, low energy buildings can not only reduce energy consumption, but also improve living comfort. In recent years, with the help of environmental sensors and deep learning technology, the intelligent management of building heat energy cycle has become a research hotspot. The research constructs an intelligent thermal energy circulation system that integrates multiple environmental sensors for real-time monitoring of indoor and outdoor temperature, humidity and other key environmental parameters. A deep learning algorithm is used to analyze the collected data to optimize the control strategy of the thermal energy cycle. Through simulation, the energy efficiency performance of the scheme under different climatic conditions and building types was evaluated. The experimental results show that the control strategy based on environmental sensors and deep learning can significantly improve the thermal energy utilization efficiency of low-energy buildings, and the average energy consumption is greatly reduced compared with the traditional management mode. The system shows good adaptability and stability under different climate conditions. Therefore, the application of environmental sensors and deep learning technology in the thermal energy cycle of low-energy buildings can effectively promote the energy efficiency management of smart cities.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190492400427X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the intensification of global climate change, the reduction of building energy consumption has become an important goal of smart city development. By optimizing the thermal energy circulation system, low energy buildings can not only reduce energy consumption, but also improve living comfort. In recent years, with the help of environmental sensors and deep learning technology, the intelligent management of building heat energy cycle has become a research hotspot. The research constructs an intelligent thermal energy circulation system that integrates multiple environmental sensors for real-time monitoring of indoor and outdoor temperature, humidity and other key environmental parameters. A deep learning algorithm is used to analyze the collected data to optimize the control strategy of the thermal energy cycle. Through simulation, the energy efficiency performance of the scheme under different climatic conditions and building types was evaluated. The experimental results show that the control strategy based on environmental sensors and deep learning can significantly improve the thermal energy utilization efficiency of low-energy buildings, and the average energy consumption is greatly reduced compared with the traditional management mode. The system shows good adaptability and stability under different climate conditions. Therefore, the application of environmental sensors and deep learning technology in the thermal energy cycle of low-energy buildings can effectively promote the energy efficiency management of smart cities.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.