Huaqi Xu , Wanjing Wang , Ji-Chao Wang , Wenjing Zhang , Zhen Chen , Xiaonan Qi , Ye Jiao , Shubo Zhang , Peisong Du , Qiaoling Wang , Ziyang Yu , Yuping Xu , Haishan Zhou , Wei Liu , Guang-Nan Luo
{"title":"Improving the interface strength and fatigue property of W-Cu-steel brazed joint via induced interface alloying","authors":"Huaqi Xu , Wanjing Wang , Ji-Chao Wang , Wenjing Zhang , Zhen Chen , Xiaonan Qi , Ye Jiao , Shubo Zhang , Peisong Du , Qiaoling Wang , Ziyang Yu , Yuping Xu , Haishan Zhou , Wei Liu , Guang-Nan Luo","doi":"10.1016/j.jmatprotec.2024.118535","DOIUrl":null,"url":null,"abstract":"<div><p>Heterogeneous W-steel joining components will produce brittle intermetallic compounds (IMCs) and significant residual stress in the interface. Adding a Cu interlayer serves as an effective solution. Nevertheless, the strengthening of W-Cu-steel joints is restricted because W-Cu and Cu-steel are members of binary immiscible and finite solid solution systems. Thus, accomplishing interface alloying by overcoming the positive generating energy of insoluble systems and opening up interatomic diffusion channels is a crucial issue to be addressed. In this work, casting and brazing technologies were incorporated into bonding W-Cu-steel to provide a high temperature field, as well as the dissolving and wetting of Cu-based liquid phase to refractory W. It is shown that the superior tensile strength of the W/Cu castings-steel brazed joints (∼264 MPa) was achieved, and the joint survived 1000 cycles of thermal fatigue under 1 MW/m<sup>2</sup>. To assess the effects of brazing and casting on the W-Cu-steel joint, a detailed analysis was conducted on the mechanism of atomic diffusion in the joint interface. It is considered that in W-Cu joining, casting provided a higher thermodynamic driving force than brazing, thus achieving better interatomic diffusion and a wider microalloying region. Cu-steel joining achieved good alloying and forming dendritic extensions by intergranular diffusion. Based on the process optimization results, the feasibility of preparing the U-shaped first wall (FW) mock-up with W armor using brazing technology was verified. This study provides a new technological path, offering a major design and manufacturing guide for plasma facing components (PFCs).</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"332 ","pages":"Article 118535"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092401362400253X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous W-steel joining components will produce brittle intermetallic compounds (IMCs) and significant residual stress in the interface. Adding a Cu interlayer serves as an effective solution. Nevertheless, the strengthening of W-Cu-steel joints is restricted because W-Cu and Cu-steel are members of binary immiscible and finite solid solution systems. Thus, accomplishing interface alloying by overcoming the positive generating energy of insoluble systems and opening up interatomic diffusion channels is a crucial issue to be addressed. In this work, casting and brazing technologies were incorporated into bonding W-Cu-steel to provide a high temperature field, as well as the dissolving and wetting of Cu-based liquid phase to refractory W. It is shown that the superior tensile strength of the W/Cu castings-steel brazed joints (∼264 MPa) was achieved, and the joint survived 1000 cycles of thermal fatigue under 1 MW/m2. To assess the effects of brazing and casting on the W-Cu-steel joint, a detailed analysis was conducted on the mechanism of atomic diffusion in the joint interface. It is considered that in W-Cu joining, casting provided a higher thermodynamic driving force than brazing, thus achieving better interatomic diffusion and a wider microalloying region. Cu-steel joining achieved good alloying and forming dendritic extensions by intergranular diffusion. Based on the process optimization results, the feasibility of preparing the U-shaped first wall (FW) mock-up with W armor using brazing technology was verified. This study provides a new technological path, offering a major design and manufacturing guide for plasma facing components (PFCs).
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.