Spectroscopic investigation of oxidation in GaSe 2D layered materials

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2024-08-11 DOI:10.1016/j.mee.2024.112256
{"title":"Spectroscopic investigation of oxidation in GaSe 2D layered materials","authors":"","doi":"10.1016/j.mee.2024.112256","DOIUrl":null,"url":null,"abstract":"<div><p>GaSe, a two-dimensional layered metal monochalcogenide, has recently attracted growing interest due to its unique electronic properties and potential technological applications. In this study, we investigate the oxidation mechanisms and properties of GaSe exposed to air for different durations, with the intensive use of Raman spectroscopy, combined with atomic force microscopy (AFM), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). Raman analysis reveals the oxidation of GaSe, resulting in the formation of a thin layer comprising Ga<sub>2</sub>Se<sub>3</sub>, Ga<sub>2</sub>O<sub>3</sub>, and amorphous selenium. Utilizing these signatures, oxidation is then tracked. Raman spectroscopy reveals that GaSe layer becomes oxidized almost immediately after exposure to air. However, the oxidation is a self-limiting process, taking roughly 15 min to construct an 8 Å thick layer of Ga₂O₃. XPS analysis shows a good agreement with Raman analysis. The polarized Raman study suggests that the Ga₂Se₃ and Ga₂O₃ layers tend to reach an oriented structural state over time. In ambient conditions, the intensity of all Raman modes and the luminescence decreases, linked to reduction in GaSe thickness. By using various Raman excitation wavelengths, we highlight the depth-dependent oxidation dynamics in this 2D layered GaSe material.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001254","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

GaSe, a two-dimensional layered metal monochalcogenide, has recently attracted growing interest due to its unique electronic properties and potential technological applications. In this study, we investigate the oxidation mechanisms and properties of GaSe exposed to air for different durations, with the intensive use of Raman spectroscopy, combined with atomic force microscopy (AFM), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). Raman analysis reveals the oxidation of GaSe, resulting in the formation of a thin layer comprising Ga2Se3, Ga2O3, and amorphous selenium. Utilizing these signatures, oxidation is then tracked. Raman spectroscopy reveals that GaSe layer becomes oxidized almost immediately after exposure to air. However, the oxidation is a self-limiting process, taking roughly 15 min to construct an 8 Å thick layer of Ga₂O₃. XPS analysis shows a good agreement with Raman analysis. The polarized Raman study suggests that the Ga₂Se₃ and Ga₂O₃ layers tend to reach an oriented structural state over time. In ambient conditions, the intensity of all Raman modes and the luminescence decreases, linked to reduction in GaSe thickness. By using various Raman excitation wavelengths, we highlight the depth-dependent oxidation dynamics in this 2D layered GaSe material.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaSe 二维层状材料中的氧化光谱研究
硒化镓(GaSe)是一种二维层状金属单质,由于其独特的电子特性和潜在的技术应用,最近引起了越来越多的关注。在本研究中,我们通过大量使用拉曼光谱,结合原子力显微镜(AFM)、光致发光(PL)和 X 射线光电子能谱(XPS),研究了 GaSe 暴露于空气中不同时间的氧化机制和性质。拉曼分析揭示了 GaSe 的氧化过程,形成了由 Ga2Se3、Ga2O3 和无定形硒组成的薄层。利用这些特征,可以跟踪氧化过程。拉曼光谱显示,GaSe 层暴露在空气中后几乎立即发生氧化。然而,氧化是一个自我限制的过程,大约需要 15 分钟才能形成 8 Å 厚的镓₂O₃层。XPS 分析与拉曼分析显示出良好的一致性。偏振拉曼研究表明,随着时间的推移,Ga₂Se₃ 和 Ga₂O₃层趋向于达到一种定向结构状态。在环境条件下,所有拉曼模式和发光强度都会下降,这与 GaSe 厚度的减少有关。通过使用不同的拉曼激发波长,我们强调了这种二维层状 GaSe 材料中与深度相关的氧化动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Editorial Board High density nanofluidic channels by self-sealing for metallic nanoparticles detection Etch of nano-TSV with smooth sidewall and excellent selection ratio for backside power delivery network Development of an emulator of the sustainable energy harvesting pad system on a bike lane for charging lithium batteries Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1