Enhancing Hypotension Prediction in Real-time Patient Monitoring Through Deep Learning: A Novel Application of XResNet with Contrastive Learning and Value Attention Mechanisms.

Xiangru Chen, Milos Hauskrecht
{"title":"Enhancing Hypotension Prediction in Real-time Patient Monitoring Through Deep Learning: A Novel Application of XResNet with Contrastive Learning and Value Attention Mechanisms.","authors":"Xiangru Chen, Milos Hauskrecht","doi":"10.1007/978-3-031-66538-7_5","DOIUrl":null,"url":null,"abstract":"<p><p>The precise prediction of hypotension is vital for advancing preemptive patient care strategies. Traditional machine learning approaches, while instrumental in this field, are hampered by their dependence on structured historical data and manual feature extraction techniques. These methods often fall short of recognizing the intricate patterns present in physiological signals. Addressing this limitation, our study introduces an innovative application of deep learning technologies, utilizing a sophisticated end-to-end architecture grounded in XResNet. This architecture is further enhanced by the integration of contrastive learning and a value attention mechanism, specifically tailored to analyze arterial blood pressure (ABP) waveform signals. Our approach improves the performance of hypotension prediction over the existing state-of-theart ABP model [7]. This research represents a step towards optimizing patient care, embodying the next generation of AI-driven healthcare solutions. Through our findings, we demonstrate the promise of deep learning in overcoming the limitations of conventional prediction models, thereby offering an avenue for enhancing patient outcomes in clinical settings.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"14844 ","pages":"46-51"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-66538-7_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The precise prediction of hypotension is vital for advancing preemptive patient care strategies. Traditional machine learning approaches, while instrumental in this field, are hampered by their dependence on structured historical data and manual feature extraction techniques. These methods often fall short of recognizing the intricate patterns present in physiological signals. Addressing this limitation, our study introduces an innovative application of deep learning technologies, utilizing a sophisticated end-to-end architecture grounded in XResNet. This architecture is further enhanced by the integration of contrastive learning and a value attention mechanism, specifically tailored to analyze arterial blood pressure (ABP) waveform signals. Our approach improves the performance of hypotension prediction over the existing state-of-theart ABP model [7]. This research represents a step towards optimizing patient care, embodying the next generation of AI-driven healthcare solutions. Through our findings, we demonstrate the promise of deep learning in overcoming the limitations of conventional prediction models, thereby offering an avenue for enhancing patient outcomes in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习加强实时患者监测中的低血压预测:具有对比学习和价值注意机制的 XResNet 的新应用。
精确预测低血压对于推进先发制人的患者护理策略至关重要。传统的机器学习方法虽然在这一领域大有用武之地,但由于依赖于结构化历史数据和人工特征提取技术而受到阻碍。这些方法往往无法识别生理信号中存在的复杂模式。针对这一局限性,我们的研究引入了深度学习技术的创新应用,利用以 XResNet 为基础的复杂端到端架构。通过整合对比学习和价值注意机制,这一架构得到了进一步增强,专门用于分析动脉血压(ABP)波形信号。与现有的先进 ABP 模型相比,我们的方法提高了低血压预测的性能[7]。这项研究向优化患者护理迈出了一步,体现了下一代人工智能驱动的医疗解决方案。通过我们的研究成果,我们展示了深度学习在克服传统预测模型局限性方面的前景,从而为提高临床环境中患者的治疗效果提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Hypotension Prediction in Real-time Patient Monitoring Through Deep Learning: A Novel Application of XResNet with Contrastive Learning and Value Attention Mechanisms. Minimizing Survey Questions for PTSD Prediction Following Acute Trauma. Uncovering hidden therapeutic indications through drug repurposing with graph neural networks and heterogeneous data. Learning EKG Diagnostic Models with Hierarchical Class Label Dependencies. Predicting Kidney Transplant Survival using Multiple Feature Representations for HLAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1