{"title":"Use of Structural Alerts for Reactive Metabolites in the Application SpotRM","authors":"Alf Claesson*, ","doi":"10.1021/acs.chemrestox.4c0020510.1021/acs.chemrestox.4c00205","DOIUrl":null,"url":null,"abstract":"<p >Reactive metabolite (RM) formation is widely accepted as playing a crucial role in causing idiosyncratic adverse drug reactions (IADRs), where the liver is most affected. An important goal of drug design is to avoid selection of drug candidates giving rise to RMs and therefore risk causing problems later on involving IADRs. The simplest, initial approach is to avoid test structures that have substructures known or strongly suspected to be associated with IADRs. However, as is evident from the many case reports of IADRs, in most cases a clear association with any (bio)chemical mechanism is lacking, which makes it hard to establish any structure-toxicity relationship. Separate studies of RM formation, in vitro and in vivo, have led to likely evidence and to establishing many structural alerts (SAs) that can be used for fast selection/deselection of planned test compounds. As a background to a discussion of the concept, 25 kinase inhibitor drugs with known problems of hepatotoxicity were probed against a set of SAs contained in the application SpotRM. A clear majority of the probed drugs show liabilities as evident by being flagged by more than one of the fairly established types of SAs. At the same time, no clear SAs were found in three drugs, which is discussed in the broader context of usefulness and selection tactics of SAs in drug design.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 8","pages":"1231–1245 1231–1245"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00205","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive metabolite (RM) formation is widely accepted as playing a crucial role in causing idiosyncratic adverse drug reactions (IADRs), where the liver is most affected. An important goal of drug design is to avoid selection of drug candidates giving rise to RMs and therefore risk causing problems later on involving IADRs. The simplest, initial approach is to avoid test structures that have substructures known or strongly suspected to be associated with IADRs. However, as is evident from the many case reports of IADRs, in most cases a clear association with any (bio)chemical mechanism is lacking, which makes it hard to establish any structure-toxicity relationship. Separate studies of RM formation, in vitro and in vivo, have led to likely evidence and to establishing many structural alerts (SAs) that can be used for fast selection/deselection of planned test compounds. As a background to a discussion of the concept, 25 kinase inhibitor drugs with known problems of hepatotoxicity were probed against a set of SAs contained in the application SpotRM. A clear majority of the probed drugs show liabilities as evident by being flagged by more than one of the fairly established types of SAs. At the same time, no clear SAs were found in three drugs, which is discussed in the broader context of usefulness and selection tactics of SAs in drug design.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.