{"title":"Unveiling thermally driven photoluminescence in CVD grown MoS2 dendritic flake","authors":"Anagha G. , Kalyan Ghosh , Pratap Kumar Sahoo , Jyoti Mohanty","doi":"10.1016/j.physe.2024.116065","DOIUrl":null,"url":null,"abstract":"<div><p>High-quality MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanostructures were fabricated via chemical vapor deposition technique on SiO<sub>2</sub>/Si substrate. In this paper, the effect of temperature on the photoluminescence behavior of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> dendritic flake is addressed. We scrutinized the photoluminescence spectra of monolayer and multilayer regions of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the temperature range 300 K–680 K. Monolayer and multilayer behavior of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> flakes are confirmed by Raman and Photoluminescence spectroscopy. The excitonic peaks from the multilayer regime become less intense and show a red shift compared to the monolayer PL spectra. Thermally-induced bandgap modulation of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is demonstrated. The excitonic intensity and peak positions reveal pronounced temperature-dependent changes. These changes are explicable through the increased electron–phonon interaction and lattice rearrangements. Furthermore, first principle calculations are employed to glean insight into the impact of atomic rearrangements on the band gap behavior of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Our research presents a detailed understanding of thermally driven band gap modulation of monolayer and multilayer MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which is essential for designing optoelectronic devices.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116065"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001693","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-quality MoS nanostructures were fabricated via chemical vapor deposition technique on SiO2/Si substrate. In this paper, the effect of temperature on the photoluminescence behavior of MoS dendritic flake is addressed. We scrutinized the photoluminescence spectra of monolayer and multilayer regions of MoS in the temperature range 300 K–680 K. Monolayer and multilayer behavior of MoS flakes are confirmed by Raman and Photoluminescence spectroscopy. The excitonic peaks from the multilayer regime become less intense and show a red shift compared to the monolayer PL spectra. Thermally-induced bandgap modulation of MoS is demonstrated. The excitonic intensity and peak positions reveal pronounced temperature-dependent changes. These changes are explicable through the increased electron–phonon interaction and lattice rearrangements. Furthermore, first principle calculations are employed to glean insight into the impact of atomic rearrangements on the band gap behavior of MoS. Our research presents a detailed understanding of thermally driven band gap modulation of monolayer and multilayer MoS, which is essential for designing optoelectronic devices.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures