Lei Xu , Shiqi Qiu , Bangyu Li , Shengqun Guo , Ruimin Huang , Weibin Qiu
{"title":"Flexible modulation of topological resonator based on different domain walls based on graphene plasmonic valley photonic crystals","authors":"Lei Xu , Shiqi Qiu , Bangyu Li , Shengqun Guo , Ruimin Huang , Weibin Qiu","doi":"10.1016/j.physe.2025.116225","DOIUrl":null,"url":null,"abstract":"<div><div>Topological edge states (ES) emerge at the interfaces between photonic crystals with distinct topological properties, enabling the suppression of backscattering for unidirectional transmission and exhibiting robustness against defects and disorders. In this work, we propose a flexible modulation strategy for the ES within resonators based on graphene plasmonic valley photonic crystals (VPhCs). Specifically, we initially construct four types of rhombic resonators composed by domain walls using topological valley edge states (VES), achieving localized ES optical fields at various domain walls. Subsequently, four categories of domain walls are heterogeneously integrated to form a single hexagonal resonator. The electromagnetic field distribution in the resonators is dynamically modulated by the variation of the frequency. Our results might provide opportunities for the flexible modulation of ES in graphene plasmonic VPhC resonators, offering prospects for applications in topological plasmonic lasers and high-density micro-nano photonic integration.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116225"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000505","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Topological edge states (ES) emerge at the interfaces between photonic crystals with distinct topological properties, enabling the suppression of backscattering for unidirectional transmission and exhibiting robustness against defects and disorders. In this work, we propose a flexible modulation strategy for the ES within resonators based on graphene plasmonic valley photonic crystals (VPhCs). Specifically, we initially construct four types of rhombic resonators composed by domain walls using topological valley edge states (VES), achieving localized ES optical fields at various domain walls. Subsequently, four categories of domain walls are heterogeneously integrated to form a single hexagonal resonator. The electromagnetic field distribution in the resonators is dynamically modulated by the variation of the frequency. Our results might provide opportunities for the flexible modulation of ES in graphene plasmonic VPhC resonators, offering prospects for applications in topological plasmonic lasers and high-density micro-nano photonic integration.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures