Fiona C. Y. Yu, Jorge L. Gálvez Vallejo, Giuseppe M. J. Barca
{"title":"Automatic molecular fragmentation by evolutionary optimisation","authors":"Fiona C. Y. Yu, Jorge L. Gálvez Vallejo, Giuseppe M. J. Barca","doi":"10.1186/s13321-024-00896-z","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular fragmentation is an effective suite of approaches to reduce the formal computational complexity of quantum chemistry calculations while enhancing their algorithmic parallelisability. However, the practical applicability of fragmentation techniques remains hindered by a dearth of automation and effective metrics to assess the quality of a fragmentation scheme. In this article, we present the Quick Fragmentation via Automated Genetic Search (QFRAGS), a novel automated fragmentation algorithm that uses a genetic optimisation procedure to generate molecular fragments that yield low energy errors when adopted in Many Body Expansions (MBEs). Benchmark testing of QFRAGS on protein systems with less than 500 atoms, using two-body (MBE2) and three-body (MBE3) MBE calculations at the HF/6-31G* level, reveals mean absolute energy errors (MAEE) of 20.6 and 2.2 kJ <span>\\(\\hbox {mol}^{-1}\\)</span>, respectively. For larger protein systems exceeding 500 atoms, MAEEs are 181.5 kJ <span>\\(\\hbox {mol}^{-1}\\)</span> for MBE2 and 24.3 kJ <span>\\(\\hbox {mol}^{-1}\\)</span> for MBE3. Furthermore, when compared to three manual fragmentation schemes on a 40-protein dataset, using both MBE and Fragment Molecular Orbital techniques, QFRAGS achieves comparable or often lower MAEEs. When applied to a 10-lipoglycan/glycolipid dataset, MAEs of 7.9 and 0.3 kJ <span>\\(\\hbox {mol}^{-1}\\)</span> were observed at the MBE2 and MBE3 levels, respectively.</p><p><b>Scientific Contribution</b> This Article presents the Quick Fragmentation via Automated Genetic Search (QFRAGS), an innovative molecular fragmentation algorithm that significantly improves upon existing molecular fragmentation approaches by specifically addressing their lack of automation and effective fragmentation quality metrics. With an evolutionary optimisation strategy, QFRAGS actively pursues high quality fragments, generating fragmentation schemes that exhibit minimal energy errors on systems with hundreds to thousands of atoms. The advent of QFRAGS represents a significant advancement in molecular fragmentation, greatly improving the accessibility and computational feasibility of accurate quantum chemistry calculations.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00896-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00896-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular fragmentation is an effective suite of approaches to reduce the formal computational complexity of quantum chemistry calculations while enhancing their algorithmic parallelisability. However, the practical applicability of fragmentation techniques remains hindered by a dearth of automation and effective metrics to assess the quality of a fragmentation scheme. In this article, we present the Quick Fragmentation via Automated Genetic Search (QFRAGS), a novel automated fragmentation algorithm that uses a genetic optimisation procedure to generate molecular fragments that yield low energy errors when adopted in Many Body Expansions (MBEs). Benchmark testing of QFRAGS on protein systems with less than 500 atoms, using two-body (MBE2) and three-body (MBE3) MBE calculations at the HF/6-31G* level, reveals mean absolute energy errors (MAEE) of 20.6 and 2.2 kJ \(\hbox {mol}^{-1}\), respectively. For larger protein systems exceeding 500 atoms, MAEEs are 181.5 kJ \(\hbox {mol}^{-1}\) for MBE2 and 24.3 kJ \(\hbox {mol}^{-1}\) for MBE3. Furthermore, when compared to three manual fragmentation schemes on a 40-protein dataset, using both MBE and Fragment Molecular Orbital techniques, QFRAGS achieves comparable or often lower MAEEs. When applied to a 10-lipoglycan/glycolipid dataset, MAEs of 7.9 and 0.3 kJ \(\hbox {mol}^{-1}\) were observed at the MBE2 and MBE3 levels, respectively.
Scientific Contribution This Article presents the Quick Fragmentation via Automated Genetic Search (QFRAGS), an innovative molecular fragmentation algorithm that significantly improves upon existing molecular fragmentation approaches by specifically addressing their lack of automation and effective fragmentation quality metrics. With an evolutionary optimisation strategy, QFRAGS actively pursues high quality fragments, generating fragmentation schemes that exhibit minimal energy errors on systems with hundreds to thousands of atoms. The advent of QFRAGS represents a significant advancement in molecular fragmentation, greatly improving the accessibility and computational feasibility of accurate quantum chemistry calculations.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.