{"title":"Deep learning based uterine fibroid detection in ultrasound images.","authors":"Haibin Xi, Wenjing Wang","doi":"10.1186/s12880-024-01389-z","DOIUrl":null,"url":null,"abstract":"<p><p>Uterine fibroids are common benign tumors originating from the uterus's smooth muscle layer, often leading to symptoms such as pelvic pain, and reproductive issues. Early detection is crucial to prevent complications such as infertility or the need for invasive treatments like hysterectomy. One of the main challenges in diagnosing uterine fibroids is the lack of specific symptoms, which can mimic other gynecological conditions. This often leads to under-diagnosis or misdiagnosis, delaying appropriate management. In this research, an attention based fine-tuned EfficientNetB0 model is proposed for the classification of uterine fibroids from ultrasound images. Attention mechanisms, permit the model to focus on particular parts of an image and move forward the model's execution by empowering it to specifically go to imperative highlights whereas overlooking irrelevant ones. The proposed approach has used a total of 1990 images divided into two classes: Non-uterine fibroid and uterine fibroid. The data augmentation methods have been connected to improve generalization and strength by exposing it to a wider range of varieties within the training data. The proposed model has obtained the value of accuracy as 0.99. Future research should focus on improving the accuracy and efficiency of diagnostic techniques, as well as evaluating their effectiveness in diverse populations with higher sensitivity and specificity for the detection of uterine fibroids, as well as biomarkers to aid in diagnosis.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01389-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Uterine fibroids are common benign tumors originating from the uterus's smooth muscle layer, often leading to symptoms such as pelvic pain, and reproductive issues. Early detection is crucial to prevent complications such as infertility or the need for invasive treatments like hysterectomy. One of the main challenges in diagnosing uterine fibroids is the lack of specific symptoms, which can mimic other gynecological conditions. This often leads to under-diagnosis or misdiagnosis, delaying appropriate management. In this research, an attention based fine-tuned EfficientNetB0 model is proposed for the classification of uterine fibroids from ultrasound images. Attention mechanisms, permit the model to focus on particular parts of an image and move forward the model's execution by empowering it to specifically go to imperative highlights whereas overlooking irrelevant ones. The proposed approach has used a total of 1990 images divided into two classes: Non-uterine fibroid and uterine fibroid. The data augmentation methods have been connected to improve generalization and strength by exposing it to a wider range of varieties within the training data. The proposed model has obtained the value of accuracy as 0.99. Future research should focus on improving the accuracy and efficiency of diagnostic techniques, as well as evaluating their effectiveness in diverse populations with higher sensitivity and specificity for the detection of uterine fibroids, as well as biomarkers to aid in diagnosis.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.