Leila Figueiredo Dantas, Igor Tona Peres, Bianca Brandão de Paula Antunes, Leonardo S L Bastos, Silvio Hamacher, Pedro Kurtz, Ignacio Martin-Loeches, Fernando Augusto Bozza
{"title":"Prediction of multidrug-resistant bacteria (MDR) hospital-acquired infection (HAI) and colonisation: A systematic review.","authors":"Leila Figueiredo Dantas, Igor Tona Peres, Bianca Brandão de Paula Antunes, Leonardo S L Bastos, Silvio Hamacher, Pedro Kurtz, Ignacio Martin-Loeches, Fernando Augusto Bozza","doi":"10.1016/j.idh.2024.07.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hospital-Acquired Infections (HAI) represent a public health priority in most countries worldwide. Our main objective was to systematically review the quality of the predictive modeling literature regarding multidrug-resistant gram-negative bacteria in Intensive Care Units (ICUs).</p><p><strong>Methods: </strong>We conducted and reported a Systematic Literature Review according to the recommendations of the PRISMA statement. We analysed the quality of the articles in terms of adherence to the TRIPOD checklist.</p><p><strong>Results: </strong>The initial search identified 1935 papers and 15 final articles were included in the review. Most studies analysed used traditional prediction models (logistic regression), and only three developed machine-learning techniques. We noted poor adherence to the main methodological issues recommended in the TRIPOD checklist to develop prediction models, such as handling missing data (20% adherence), model-building procedures (20% adherence), assessing model performance (47% adherence), and reporting performance measures (33% adherence).</p><p><strong>Conclusions: </strong>Our review found few studies that use efficient alternatives to predict the acquisition of multidrug-resistant gram-negative bacteria in ICUs. Furthermore, we noted a lack of strategies for dealing with missing data, feature selection, and imbalanced datasets, a common problem in HAI studies.</p>","PeriodicalId":94040,"journal":{"name":"Infection, disease & health","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection, disease & health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.idh.2024.07.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hospital-Acquired Infections (HAI) represent a public health priority in most countries worldwide. Our main objective was to systematically review the quality of the predictive modeling literature regarding multidrug-resistant gram-negative bacteria in Intensive Care Units (ICUs).
Methods: We conducted and reported a Systematic Literature Review according to the recommendations of the PRISMA statement. We analysed the quality of the articles in terms of adherence to the TRIPOD checklist.
Results: The initial search identified 1935 papers and 15 final articles were included in the review. Most studies analysed used traditional prediction models (logistic regression), and only three developed machine-learning techniques. We noted poor adherence to the main methodological issues recommended in the TRIPOD checklist to develop prediction models, such as handling missing data (20% adherence), model-building procedures (20% adherence), assessing model performance (47% adherence), and reporting performance measures (33% adherence).
Conclusions: Our review found few studies that use efficient alternatives to predict the acquisition of multidrug-resistant gram-negative bacteria in ICUs. Furthermore, we noted a lack of strategies for dealing with missing data, feature selection, and imbalanced datasets, a common problem in HAI studies.